تأثیر سمیت تحت کشش دانه‌ی نانو اکسید روی خونی ماهی کلمه (Rutilus rutilus caspicus) بر شاخص‌های (ZnO NPs)

شکل‌دادنی‌ها، گروه ژنتیکی، دانشکده تهیه‌کننده، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

1-استادیار، گروه تهیه‌کننده، دانشکده تهیه‌کننده، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2-دانشجوی دکتری گروه تهیه‌کننده، دانشکده تهیه‌کننده، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3-دانش آموزشی کارشناسی ارشد گروه تهیه‌کننده، دانشکده تهیه‌کننده، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

این مطالعه به منظور بررسی اثرات تحت کششد نانو اکسید روی بر فاکتورهای خونی ماهی کلمه انجام شد. در این تحقیق ابتدا با تعیین دامنه‌ای از غلظت‌های نانو اکسید روی به منظور تعیین تعداد LC50 غلظت ماهی کلمه در زمان‌های ۴۸، ۹۴، ۹۴، ۹۴ و ۹۴ ساعت محاسبه شد. سپس با توجه به میزان LC50 آزمایش جداگانه‌ای طراحی شد و با این غلظت تحت کشش دانه‌ای نانو اکسید روی و در فاکتورهای خون شامل ماهیان مورد بررسی قرار گرفت. نمونه‌های خون از بچه ماهیان کلمه که ۷ روز در معرض غلظت تحت کشش LC50 نانو اکسید روی قرار داشتند به همراه بچه ماهیان کلمه که در معرض مواد نانو تیمید (شاهم) گرفته شد. نتایج حاصل از این تحقیق نشان داد که نانوشت‌های روی مواد تغییرات در پارامترهای خونی ماهی کلمه می‌شود که این تغییرات در شاخص‌های خونی با کاهش سطح گلبول فرمز، هموگلوبین و هماکتورپ (Hemacrit) و هماکتورپ (Hemoglobin) در تیماری‌ها که تحت تأثیر نانوشت‌های روی قرار داشتند، همراه بود (5/0/05 پ). و برای سر درمان گلوی‌های سفید (MCV و MCH و MCHC) WBC در تیماری که ماهیان در معرض غلظت تحت کشش نانو اکسید روی بودند نسبت به غلظت ماهیان شاهد فاکتور زیست (5/0/05 پ. نتایج حاصل از این مطالعه نشان داد که سمیت تحت کشش نانوشت‌های روی بر شاخص‌های خونی ماهی کلمه تأثیر منفی دارد، لذا باید از ورود این گونه مواد به آگوست آبی جلوگیری نمود.

واژگان کلیدی: نانو اکسید روی، شاخص‌های خونی

شکل‌دادنی‌ها، گروه ژنتیکی، دانشکده تهیه‌کننده، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

*نویسنده منسول

تماس: mmoradzadeh88@yahoo.com

تاریخ دریافت: 1392/1

تأمین چاپ‌پرتره غربادادی 93

Created with novaPDF Printer (www.novaPDF.com). Please register to remove this message.
مقدمه

در دهه‌های اخیر نانوتکنولوژی، به عنوان یک فناوری کاربردی مورد توجه قرار گرفته است. نانوذرات با مقداری منهای زیادی از نانومترها می‌شوند که به راحتی می‌توانند توانایی جذب ریزکه‌های زمین و یا قطعیت داشته باشند. اما اخیراً با توجه به عملکرد افزایشی داشت، نانوذرات به تورید این موارد و استفاده از آنها ایجاد شد. این امر باعث ایجاد را به خود مطوف کرد که به نام کرکلند (2008) (Wardak et al., 2008) از ایران نیز مساله آلودگی زیست محیطی به نانوذرات که به تازگی وارد چرخه فراورندی صنایع کشور شده است، از اهمیت چشمگیری برخوردار است. چرا که در صورت توجه به این مسئله و اقدامات صحیح در زمینه مدیریت این ترکیبات جدی می‌توان از آلودگی‌های خطرناک و شکستن سطحی و سیاسی دنده و آزادی کرکلند که به‌طور کلی غربی و باعث افزایش فعالیت شیمیایی ماده می‌شود. بنابراین یک ماده در مقیاس تاثیر بسیار فعالیت در ذرات معمولی همان ماده است و می‌تواند سمتی بیشتری داشته باشد (باکند، 1386)،

شتاب روزافزون نانوتکنولوژی و تولید ماده و وسایل توانسته موجب رایبیت و نفوذ بسیاری از نانوذرات به رون طبیعت و اکوسیستم‌های آن شده که نتیجه نهایی آن در بیشتر موارد اختلالات متعددی فیزیولوژیک و بیوشیمیایی در بدن موجودات زنده می‌گردد. (Liu et al., 2009)، از آن جایی که نانوذرات در حین تولید و در زمان استفاده در وسایل و گوناگون امکان جدا شده و نشته دارد. لذا باید همیشه محیط‌های آبی در معرض خطرات ناشی از آلودگی این موارد قرار داشته که در دراز مدت منجر به افزایش مرگ و میر بین انسان می‌شود. در همین راستا برای مثال مشخص است که در کارخانجات فناوری نانوذرات تقریباً هنگام تولید به مقدار زیادی از طریق راکتورهای تولید فاز مایع، این ذرات به محیط پیرامون از کارکردهای نشته پیدا کرده و تجمع می‌یابند (Liu et al., 2009). سیستم اتوکاتک نانوذرات به انتخاب نیز مشترک و ورود آنان به محیط بستگی کمی تأمین می‌کند. نانومایش نسبت به انواع درشت‌تر خود از سطح واقعی دهنده بیشتری برخوردار بوده، لذا با راحتی به درون سلول‌ها و بدن موجودات زنده وارد می‌شود و ضمن تجمع در آن نواحی در بیشتر موارد موجب اثرات منفی و آسیب‌زا در ارگانیسم‌ها شده (Buza et al., 2007). همچنین نتایج برخی از پژوهش‌ها نشان دهنده اثرات منفی نانوذرات اکسید روي بر
روی موجودات و سلول‌های هدف هستند، به طوری که در اثر تداخل با نانوذرات اکسید روی با دوز 5 میلی‌گرم بر کیلوگرم وزن بدن، موش‌ها دچار علائم ناراحتی می‌باشند. اسپرینگ و حتی مطالعات زیادی تا کنون در خصوص تأثیر انواع نانوذرات بر مکانیسم‌های یون‌سنجش و فیزیولوژی‌کی بدن ماهیان به عمل آمده که بیشتر از آن‌ها مد نظر مخرب این ذرات می‌باشد (Mortimer et al., 2010). هر چند که اکسید روی در حالت نانو دارای خواص متعددی است، اما به‌طور کلی نانوذرات اکسید روی دارای اثرات مضر بیشتری بر سلامت انسان و محیط زیست هستند (Kasemets et al., 2009; Revell, 2006; Zhang et al., 2010; Shi, 2010). هر چند استفاده از نانوذرات بسیار کمتر از سایر مواد اشاره به اثرات مشابه با محیط زیست آسیب رسانده و به‌دست آن‌ها را به دنبال دارد (Peter et al., 2004). همچنین این نانوذرات می‌توانند از لایه‌های حفاظی یا اینکونی‌های عصبی، اثرات جدی در گروه‌های انسان و محیط زیست داشته باشند (Barbu et al., 2009; Lockman et al., 2009). عبور کندی و وارد جریان خون توسط سبب اثرات شدید شود که ماهی از این نانوذرات دچار انتها نیست. اینکونی‌های علمی و مشاهدات زیست‌محیطی به عنوان یک انیدکاتور تعیین‌گر فیزیولوژیکی و آسیب‌پذیری در مدیریت شیلاتی و پروازه‌های بیماری مطابق (Mulcahy, 1975).

ماهی کلمه (Rutilus rutilus caspicus) از مهم‌ترین گونه‌های کپورماهیان دریای خزر است که به دلیل از بین رفتن سیب‌زاری از زیستگاه‌های طبیعی، این ماهی از طریق طبیعی نمی‌تواند بازسازی شود در نتیجه تولید و پرورش مصنوعی آن ضروری است که با توجه به تلاش‌های مستمر سازمان شیلاتی که جهت تأمین و حفظ جنگل از آنها در دریای خزر هر سال با تکنیک‌های مختلف ممکن است که اگرچه ماهی اگست کننده قدیم در رودخانه‌های منتهی به دریای خزر رهاسازی می‌شود وی میزان سیب این ماهی در طی سال‌های اخیر رو به کاهش نهاده است (خواهی و علاقی، 1377). همچنین با توجه به اهمیت آن در تغذیه انسان، ضرورت حفظ و بازسازی ذخایر آن بیشتر از پیش است.
آزمایش‌های خونی

مواد و روش‌ها

تعیین غلظت تحت کشنده

این آزمایش در آذر ماه سال ۱۳۹۱ در یک کارگاه خصوصی در شهر گرگان انجام شد. از ماهیان کلمه با طول کل ۵۲±۵ سانتی‌متر و وزنی ۳۶±۲۳ گرم در قالب یک طرح کاملاً تصادفی استفاده گردید. برای تعیین L96h گردید. برای تعیین L96h ناموری و نتایج رایزنی ۱/۵ به ماهی کلمه در تالکرهای فایبر کلاس ۴۰۰ لیتری جهت آبادانی شدن تغییرات شدت. بعد از گذشت دوره آب‌پاشانی ماهیان به طور تصادفی در آکواریوم‌های ۶۰ لیتری تقسیم شدند و غلظت مورد نظر از ناموری و به ماهی کلمه بند ۵۲ ساعت در معرض برخورد با انواع مختلف ناموری و در مرطوبات روز به آکواریوم نیز اضافه گردید. ابتدا ماهیان به مدت ۷۰ و ۹۶ ساعت جهت تعیین L50 شد. در هر تیمار ۲۱ قطعه ماهی و برای هر تیمار ۳ تکرار در نظر گرفته شد. سپس با استفاده از نتایج حاصل از تعیین L50 تیمار تحت کشنده و یک تیمار شاهد در نظر گرفته شد و از چه ماهیان کلمه به تعداد ۲۵ قطعه در هر تکرار در معرض غلظت تحت کشنده L50 (درصد ۵۰) فرار گرفتند.
نمونه‌های خون در بیشتر ماهیان کلمه بعد از 7 روز کاراگیری در معرض غلظت تحت کشت شد. (LC50) غلظت نانو آکسید روی به همراه به بیشتر ماهیان کلمه در معرض نانو مواد نیوبندید (شاهد)، برندهست. خون از گیری در بیشتر ماهیان به یک طبقه نهایی قطع ساقه دمی، بدون فشار و به آرامی انجام شد. به صورتی که متجر به یک شدن گلوبول‌های قرمز خون و اختلال در تهیه سرم مطلوب نموده نمونه‌های خون داخل لوله‌های هیارینه به آزمایشگاه انتقال پایان دادند. مطالعه نشان‌کنندگی گلوبول‌های سفید، هموگلوگن و درصد هماتوکریت سنجیده شد.

شمارش گلوبول‌های فرمز و سفید

تعداد کل گلوبول‌های قرمز و سفید با استفاده از یپیت ملاتور قرمز و سفید، لام نویبر و محلول های رقیق کننده گازور و تورک شمارش گردیدند. جهت شمارش گلوبول‌های قرمز مقدار 50 میلی گرم از نمونه خون را به داخل یپیت ملاتور قرمز کشیده و برای رقیق کردن از محلول گازور استفاده شد. سپس تعداد گلوبول‌های قرمز با استفاده از لام نویبر و میکروسکوپ با بزرگنمایی 400 شمارش گردید. تعداد گلوبول‌های سفید با استفاده از یپیت ملاتور سفید، لام نویبر و محلول های رقیق کننده تورک شمارش می‌گرددند (Blaxhall and Daisley, 1973).

محاسبه اندیس‌های خونی

اندیس‌های خونی شامل شاخص‌های میانگین حجم گلوبول قرمز (MCV) میانگین هموگلوپین (MCH) و میانگین غلظت هموگلوپین گلوبول (MCHC) است که با استفاده از روابط زیر محاسبه شد:

\[
\text{تعداد گلوبول‌های قرمز} = \frac{100 \times \text{میزان هماتوکریت}}{100} \\
\text{تعداد گلوبول‌های سفید} = \frac{10 \times \text{میزان هوموگلوپین}}{100} \\
\text{میزان هماتوکریت} = \frac{100 \times \text{میزان هوموگلوپین}}{100}
\]
نتایج و تحلیل داده‌ها

نتایج حاصل از آنالیزهای مختلف به صورت میانگین ± خطای استاندارد بین شده است.

اختلاف بین داده‌ها و مقایسه میانگین نمونه‌ها در تیمارهای مختلف با آنالیز واریانس یک‌طرفه با استفاده از نرم‌افزار SPSS 16 انجام و در صورت وجود اختلاف معنی‌دار بین گروه‌ها از آزمون

با روش پروباپاولیستیک Probit Analysis

لاحظه:

تعیین میزان سمیت کشنده نانوژرات روی در بجه ماهی کلمه

پس از انجام آزمایش‌ها میزان سمیت نانوژرات روی برای بجه ماهی کلمه 0/90 ± 1/12 ppm به دست آمد. غلظت احیاد کشنده 1 درصد تلفات، 30/70 درصد تلفات بعد از 24 ساعت و 36/98 ساعت پس از مجاورت با نانوژرات روی برای بجه ماهی کلمه در جدول 1 مشخص شده است.

انر غلظت تحت کشنده نانوکسید روی بر شاخه‌های خونی ماهی کلمه

نتایج حاصل از آزمایش‌های خون‌ضخامتی بجه ماهیان کلمه مورد آزمایش، در جدول شماره 2

آلوده است. هنگامی که ماهیان در محیط غلظت تحت کشنده به مدت 7 روز قرار گرفتند، نتایج نشان داد که نانوژرات موجب تغییرات در بارشهای خونی می‌شود که این تغییرات در شاخه‌های خونی با کاهش سطح گلبول قرمز، همبودها و همانگلوپین و همانگلوپین در تیماری که تحت ناحیر

ناثیه نانوژرات روی قرار داشتند همبود بود (P<0/05) و برخی افراش گلوبول‌های سفید MCH و MCV و نسبت به گروه ماهیان مشاهده شد (P<0/05).
جدول 1: غلظت ایجاد کننده در ۹۹ ساعت پس از مجازات با تاکیدات روبی برای بی‌چه‌پوش شاخصهای خونی ماهی کلمه

<table>
<thead>
<tr>
<th>عقاد</th>
<th>غلظت (سطح اطمینان 95% /ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC_{10}</td>
<td>1/54±1/19</td>
</tr>
<tr>
<td>LC_{30}</td>
<td>1/55±1/19</td>
</tr>
<tr>
<td>LC_{50}</td>
<td>1/49±1/16</td>
</tr>
<tr>
<td>LC_{70}</td>
<td>1/4±1/18</td>
</tr>
<tr>
<td>LC_{90}</td>
<td>12±1/18</td>
</tr>
</tbody>
</table>

جدول 2: شاخص‌های خونی در بی‌چه‌پوش شاخصهای ماهی کلمه

<table>
<thead>
<tr>
<th>MCV</th>
<th>MCHC</th>
<th>MCH</th>
<th>کل‌بوئین هم‌کاری گلوبرین کل‌بوئین سفید</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص</td>
<td>2/85±1/88 2/5±1/18 9/5±1/18 9/0±1/14 2/84±1/18 2/6±1/18 2/3±1/18 2/1±1/18 2/0±1/18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص</td>
<td>2/85±1/88 2/5±1/18 9/5±1/18 9/0±1/14 2/84±1/18 2/6±1/18 2/3±1/18 2/1±1/18 2/0±1/18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تعداد اعداد (میانگین ± انحراف معیار) که نشان داده شده درآمدی خاصی از آمار معناداری با یک‌چهارگر هستند (5\%).

پج تپسیستره‌ای ای به طور مستقیم و غیر مستقیم تحت تأثیر آلپ‌های آبی قرار دارند. از آن جایی که ماهیها در تناسب مستقیم با محیط‌های آبی قرار دارند، بنابراین نسبت به تغییرات فیزیکی و شیمیایی آب حساس هستند (Wilson and Taylor, 1993). مطالعات خون‌شاذل‌های روش ارزشمندی برای ارزیابی اثر محیط‌های آلپ‌های آبی ماهی‌ها است (Stentuford et al., 2003). در این بی‌خود هنگامی که ماهیان در معرض غلظت تحت کشیده به مدت 7 روز قرار گرفتند، نتایج نشان داد که
ناوذزات موجب تغییراتی در پارامترهای خونی میشدند که این تغییرات با کاهش سطح گلوبول قرمز، هموگلوبین و هژموکریت در تیماری که تحت تاثیر نانوژرات روی قرار داشت، همراه بود.

(5) پیام کردن کاهش چشمگیر تعداد گلوبول‌های قرمز خون و مقادیر هموگلوبین و هژموکریت را که منجر به کم‌توده ماسوستیتیک در در اثر تماس با روي می‌شود رخ داده. در تیماری که ماهیان در Heteropeustes fossilis معرض غلظت تحت کشیده نه اکسید روی بودند افزایش گلوبول‌های مسیف، MCHC، MCH و MCV نسبت به گروه ماهیان شاهد مشاهده شد (P<0.05) که با مطالعه رضایی زارچی (1390) هم‌خوانی دارد و بیان می‌دهد در این تحقیق با نانوژرات ورودی تولید گلوبول‌های سفید را افزایش می‌دهد. این نتایج همچنین نشان دهنده تغییرات منفی است که در ماهی در حال رخ دادن است (Lebedeva et al., 1998). کاهش هموگلوبین در ماهیانی که در مجاورت آلیپیدها قرار می‌گیرند، می‌تواند به عنک تاثیر افزایش ذرات ماده سطح در سیستم انتی‌بی‌شک مسئول سنتز هموگلوبین است (Pamila et al., 1991) و در نتیجه کاهش سنتز هموگلوبین رخ می‌دهد. افزایش در سلول‌ها در فراوانی‌های ایمنی موجب کاهش تعداد سلول‌های خونی می‌شود (Zhang et al., 2010). در مسمومیت‌های شدید کاهش تعداد سلول‌های ظاهر می‌شود (Revel, 2006). در مطالعات قبلی مکاتی‌سم اثر گذاری سریان نتو اکسید روی به دلیل آلودگی شدن Franklin et al., 2007; Heinlaan et al., 2008; Wiench 2009) به طور کلی نتایج بسیاری از پژوهش‌های نشان دهنده سیمپتوماتیک‌های است روث و Heinlaan (Jones et al., 2008) همکاران (2008) با بررسی سیمپتوماتیک و نتایج Daphnia magna بر روی ZnO رسانده که تمامی ترکیبات آن از جمله نانوذرات اکسید روی دارای سیمپتوم‌هستند (Heinlaan et al., 2008). در ارتباط با سایر نانوذرات نیز در سال 2013 مشخص شده که روی نانوذرات نیکل به درون اکسپستیجیهای آبی موجب نمونه تولید رادیکال های اکسیژنی نظیر رادیکال هیدروکسیل در بدن اورگانیسم‌های نظیر سخت پوشان کوچک و برخی ماهیان شده است. نتایج حاصل از این پژوهش نشان داد که وجود نانوذرات روی به
مقادیر ناجیز در محیط های آبی می‌تواند بر شاخص‌های خونی ماهی کلبه تأثیر منفی داشته باشد.
بنابراین باپدیدا حاد امکان از ورود این گونه مواد به اکوسیستم‌های آبی چاله‌گیری گردد.
منابع

باکندی ش و فرشادی خ 1386. سرویس پزشکی دانشگاه علوم پزشکی ایران. فصلنامه سلامت کار ایران. سال 2 شماره 1 و 2، 123-40.

خواجه م و علایقی خ 1377. بررسی سن و رشد و توپیدمی ماهی کلمه تالاب گمتیان بر روی کارشناسی رشته شیلات. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

رضایی زاری خ 1390. اثر نانوذرات آفسید تناسیم روی میزان سلولهای خونی و آنزیم‌ها کبدی در خون ره نزد ویستایم جلیلی پژوهش دانشگاه علوم پزشکی شهید صدوقی ورامین شماره 21 شماره 11.

مومتی willingness نانوذرات ک، حسین نیکی نژاد و سید حیدری 1391. بررسی سمیت نانوذرات ZnO تعامل با رنگ آبی 29 با استفاده از دافتنی مگنت مدل تحقیقات نظام سلامت. سال 2 شماره 31، 37-24.

Scott H., Tina B., Joshua T., Tunishia K. and Lauren M. 2009. Acute and chronic toxicity of nanoscale TiO2 particles to freshwater fish, cladocerans,

Aquatic Physiology and Biotechnology
Vol. 2, No. 1, Spring 2014

Effect of sub-acute toxicity nano-zinc oxide (ZnO NPs) on hematological factor of roach (Rutilus rutilus caspicus)

Aliakbar Hedayatd, Abdolreza Jahanbakhshie, Mohammad Moradzadehb, c, Mahsa javadimoosavid

1- Assistant Professor in Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran.
2- Ph.D. Student in Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran.
3- M.Sc. in Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran.

Received: May 2014 Accepted: Jun 2014

Abstract

This study was designed to investigate the effects of nano-zinc oxide on blood factors of roach. In this paper the LC\textsubscript{50} range of concentrations of zinc oxide nanoparticles for roach was determined and mortality at 24, 48, 72 and 96 hours was computed. A separate experiment was designed based on the LC\textsubscript{50} levels and induction of the lethal concentration for hematology parameters. Blood samples of the juveniles that exposed to sublethal concentrations (50% concentration LC\textsubscript{50}) of nano zinc oxide for 7 days and the controls (without exposure to nano-materials) were collected. The results showed that zinc nanoparticles cause changes in the blood parameters of the fish that the changes in blood indices by reducing the level of red blood cells (RBC), hemoglobin (Hemoglobin) and hematocrit (Hematocrit) that of the impact the nanoparticles were located along the (P<0.05) and the contrast of white blood cells (WBC), MCH, MCHC and MCV treated fish exposed to sub lethal concentrations of nano zinc oxide were increased compared to control fish (P<0.05). The results of this study showed that the lethal toxicity of nanoparticles have a negative effect on fish blood index of the roach, therefore, must be prevented from entering aquatic ecosystems such material.

Key words: Roach, Nano Zinc Oxide, Hematological Indices.

*Corresponding Author: Moradzadeh88@yahoo.com