اثرات یون و نانوذرات نقره محلول در آب بر برخی شاخص‌های فیزیولوژیک ماهی پَرِت خونی (Cichlasoma synspilum ♀ × Cichlasoma citrinellum ♂)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیلات، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 استادیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

تولید و استفاده روزافزون از نانوذرات نقره می‌تواند باعث رهایش این مواد در بوم‌سازگان آبی و آسیب به آبزیان شود. در این مطالعه اثرات یون نقره و نانوذرات نقره محلول در آب بر برخی از شاخص‌های بیوشمیایی خون ماهی پرت مورد بررسی قرار گرفت. به این منظور، تعداد 60 قطعه ماهی پرت با میانگین وزنی 5/6±5/25 گرم، به مدت 5 روز در سه تیمار  شاهد (بدون تنش)، نانوذرات نقره (مواجه شده با غلظت 250 میکروگرم در لیتر نانوذرات نقره) و یون نقره (مواجه شده با غلظت 250 میکروگرم در لیتر یون نقره) تحت تنش قرار گرفتند و در طی این مدت تغذیه نشدند. اثر یون نقره بر شاخص‌های اکسیداتیو و سطوح آنزیم‌های کبدی پلاسما به صورت معنا‌داری بیشتر از اثر نانوذرات نقره بود و با این وجود هر دو تیمار به صورت معنی‌داری منجر به افزایش شاخص‌ها نسبت به تیمار شاهد شدند (05/0P<). تنش یاد شده منجر به افزایش پروتئین کل، آلبومین و گلوبولین نسبت به گروه شاهد شد، با این وجود تفاوت معنی‌داری در مقادیر این شاخص‌ها در بین دو گروه در معرض قرارگرفته با یون یا نانوذره نقره وجود نداشت (05/0<P). در مجموع می‌توان بیان کرد که هر دو ترکیب یون و نانوذره نقره منجر به اختلالات فیزیولوژیک در ماهی پرت شد، با این وجود اثر یون نقره به مراتب شدیدتر از نانوذره نقره بود.

کلیدواژه‌ها


ابراهیمزاده س.م.، کلباسی م.ر.، حبیبی انبوهی م. و فرزانه پ. 1399. آثار هیستوپاتولوژیک سمیت حاد نانوذرات دی‎اکسید تیتانیوم بر بافت‎های آبشش، کبد و روده ماهی آزاد دریای خزر (Salmo caspius). مجله تحقیقات دامپزشکی، 75(1): 73-65.
اسماعیلی م.، هاشمی س.ر.، داودی د. و آهنگری ی. 1395. تاثیر افزودن زئولیت پوشش داده‌شده با نانو ذرات نقره در جیره بر عملکرد، جمعیت میکروبی آخرین بخش روده کوچک و ویژگی‌های ریخت‌شناختی روده جوجه‌های گوشتی. علوم دامی ایران، 40(8): 588-579.
جوهری س.ع.،حبیبی ل. وحسینی س.ژ. 1394. سمیت کلوئید نانونقره در ماهی گورخری (Danio rerio): یون‌ها، نانوذرات یا هر دو؟ تغذیه آبزیان، 1(1): 68-59.
رزم­آرا پ.، پیکان حیرتی ف. و درافشان س. 1393. اثر نانوذرات­نقره بر برخی شاخص‌های خون­شناسی گربه ماهی رنگین­کمان (Pangasius hypophthalmus). مجله سلول و بافت، 5(3): 272-263.
رزم­آرا پ.، درافشان س.، پیکان حیرتی ف.، طالبی م. و رنجبر م. 1392. اثر نانوذرات نقره کلوئیدی و نیترات نقره محلول در آب بر تغییرات بافتی آبشش گربه­ماهی رنگین­کمان Pangasianodon hypophthalmus. مجله بوم شناسی آبزیان، 3(3): 18-10.
سلطانی م. و خوشباور رستمی ح.ع. 1381. مطالعه اثر دیازینون بر برخی شاخص‌های خونی و بیوشیمیایی تاس ماهی روسی (چالباش) (Acipenser gueldenstaedtii). مجله علوم و فنون دریایی ایران، 1(4): 75-65.
علیشاهی م.، حاجیپور ع.، قربانپور م. و مصباح م. 1397. بررسی اثر ادجوانی نانوکیتوزان بر ایمنی زایی واکسن کشته آئروموناس هیدروفیلا در ماهی کپور معمولی (Cyprinus carpio). مجله تحقیقات دامپزشکی (دانشگاه تهران)، 32(4): 346-329.
مخلص آبادی فراهانی ا.، درافشان س. و پیکان حیرتی ف. 1396. کاهش آسیب‌های هیستوپاتولوژیک آبشش ماهی پرت (Cichlasoma synspilum × Cichlasoma citrinellum) در مواجهه با نانوذرات نقره محلول در آب از طریق تغذیه با جیره حاوی آستاگزانتین و نمک صفراوی. دو فصلنامه علوم آبزی‌پروری، 5(2): 11-1. 
مخلص آبادی فراهانی ا.، درافشان س. و پیکان حیرتی ف. 1398. شاخص‌های خون‌شناسی ماهی پرت (Cichlasoma synspilum × Cichlasoma citrinellum) تغذیه شده با مکمل غذایی آستاگزانتین و نمک صفراوی در مواجهه با نانوذرات نقره. نشریه علمی بوم‌شناسی آبزیان، 9(3): 142-134.
 Akbary P. and Jahanbakhshi A. 2019. Nano and macro iron oxide (Fe2O3) as feed additives: Effects on growth, biochemical, activity of hepatic enzymes, liver histopathology and appetite-related gene transcript in goldfish (Carassius auratus). Aquaculture, 510: 191–197.
Attia A.A. 2014. Evaluation of the testicular alterations induced by silver nanoparticles in male mice: Biochemical, histological and ultrastructural studies. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(4): 1558–1589.
Baldissera M.D., Souza C.F., Da Silva H.N.P., Zeppenfeld C.C., Dornelles J.L., Henn A.S., Duarte F.A., Da Costa S.T., Da Silva A.S., Cunha M.A. and Baldisserotto B. 2020. Diphenyl diselenide dietary supplementation protects against fumonisin B1-induced oxidative stress in brains of the silver catfish Rhamdia quelen. Comparative Biochemistry and Physiology C, 36: 108–138.
Bera K.K., Kumar S., Paul T., Prasad K.P., Shukla S.P. and Kumar K. 2020. Triclosan induces immunosuppression and reduces survivability of striped catfish Pangasianodon hypophthalmus during the challenge to a fish pathogenic bacterium Edwardsiella tarda. Environmental Research, 66: 57–66.
Borges A., Scotti L.V., Siqueira D.R., Jurinitz D.F. and Wassermann G.F. 2004. Hematologic and serum biochemical values for jundia (Rhamdia quelen). Fish Physiology and Biochemistry, 30(1): 21–25.
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248–254.
Demarchi C.A., Da Silva L.M., Niedzwiecka A., Slawska-Waniewska A., Lewinska S., Dal Magro J., Calisto J.F.F., Martello R. and Rodrigues C.A. 2020. Nanoecotoxicology study of the response of magnetic O-carboxymethylchitosan loaded silver nanoparticles on Artemia salina. Environmental Toxicology and Pharmacology, 66: 103–198.
Di Giulio R.T. and Meyer J.N. 2008. Reactive oxygen species and oxidative stress. P: 273–324. In: Di Giulio R.T. and Hinton D.E. (Eds.). The Toxicology of Fishes. CRC Press, USA.
Ghelichpour M., Mirghaed A.T., Hoseini S.M. and Jimenez A.P. 2020. Plasma antioxidant and hepatic enzymes activity, thyroid hormones alterations and health status of liver tissue in common carp (Cyprinus carpio) exposed to lufenuron. Aquaculture, 56: 34–66.
Govindasamy R. and Rahuman A.A. 2012. Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). Journal of Environmental Sciences, 24(6): 1091–1098.
Helfman G., Collette B.B., Facey D.E. and Bowen B.W. 2009. The Diversity of Fishes: Biology, Evolution, and Ecology. John Wiley and Sons, Malaysia. 550P.
Jones-Trower A., Garcia A., Meseda C.A., He Y., Weiss C., Kumar A., Weir J.P. and Merchlinsky M. 2005. Identification and preliminary characterization of vaccinia virus (Dryvax) antigens recognized by vaccinia immune globulin. Virology, 343(1): 128–140.
Liu J. and Hurt R.H. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental Science and Technology, 44(6): 2169–2175.
Luther W. and Zweck A. 2013. Economic impact and applications of nanomaterials. Safety Aspects of Engineered Nanomaterials, 66: 63–78.
Marklund S. and Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3): 469–474.
Martinez-Alvarez R.M., Morales A.E. and Sanz A. 2005. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15(1): 75–88.
Moss M.L., Sklair-Tavron L. and Nudelman R. 2008. Drug insight: Tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nature Clinical Practice Rheumatology, 4(6): 300–309.
Pournori B., Paykan Heyrati F. and Dorafshan S. 2017. Histopathological alterations in various tissues of striped catfish, Pangasianodon hypophthalmus, fed on dietary nucleotides and exposed to water-borne silver nanoparticles or silver nitrate. Iranian Journal of Aquatic Animal Health, 3(2): 36–52.
Sancho E., Ferrando M.D. and Andreu E. 1997. Sublethal effects of an organophosphate insecticide on the European eel, Anguilla anguilla. Ecotoxicology and Environmental Safety, 36(1):57–65.
Scown T.M., Santos E.M., Johnston B.D. and Gaiser B. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences, 115(2): 521–534.
Serafini S., De Freitas Souza C., Baldissera M.D., Baldisserotto B., Picoli F., Segat J.C., Baretta D. and Da Silva A.S. 2019. Fish exposed to eprinomectin show hepatic oxidative stress and impairment in enzymes of the phosphotransfer network. Aquaculture, 508(11): 199–205.
Singh R.K. and Sharma B. 1998. Carbofuran induced biochemical changes in Clarias batrachus. Pesticide Science, 53(4): 285–290.
Xiu Z., Zhang Q., Puppala H.L., Colvin V.L. and Alvarez P.J.J. 2012. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8): 4271–4275.
Yang C., Lim W. and Song G. 2020. Mediation of oxidative stress toxicity induced by Pyrethroid pesticides in fish. Comparative Biochemistry and Physiology C, 66: 106–111.
Ye H., Zhou Y., Su N., Wang A., Tan X., Sun Z., Zou C., Liu Q. and Ye C., 2019. Effects of replacing fish meal with rendered animal protein blend on growth performance, hepatic steatosis and immune status in hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Aquaculture, 511(10): 734–743.