بررسی خواص سیتوتوکسیک و ضدباکتریایی Symbiodinium sp. جدا و خالص شده از شقایق دریایی Stichodactyla haddoni در خلیج‌های فارس و عمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری زیست‌شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 استاد گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران

3 استاد گروه زیست‌شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

4 دانشیار گروه زیست‌شناسی دریا، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

5 استادیار گروه زیست‌شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

6 استادیار پارک زیست‌فناوری خلیج فارس، جزیره قشم، ایران

چکیده

روابط همزیستی نقش مهمی در اکوسیستم‌های دریایی دارد. در میان همزیست‌ها، محصولات شیمیایی دینوفلاژله‌های دریایی توجه زیست‌شناسان و بوم‌شناسان را به دلیل وجود منابع غنی از متابولیت‌های ثانویه فعال به خود جلب کرده است. هدف از این پژوهش بررسی سیتوتوکسیک و فعالیت ضدباکتریایی عصاره Symbiodinium sp. جداسازی و خالص شده از Stichodactyla haddoni در مناطق خلیج‌های فارس و عمان و همچنین کشت Symbiodinium sp. بوده است. نمونه‌برداری شقایق‌های دریایی طی دو فصل تابستان و زمستان انجام شد و Symbiodinium sp. به روش هموژنیزه کردن جداسازی، سپس کشت و عصاره‌گیری شد. سپس خاصیت سیتوتوکسیک با روش BST ارزیابی شد. همچنین اثر عصاره‌ها بر باکتری‌های بیماری‌زای انسانی Escherichia coli و Staphylococcus aureus بررسی شد. نتایج نشان داد که بیشترین خاصیت سیتوتوکسیک عصاره در آزمایشگاه طی 24 و 72 ساعت با کمترین LC50 (به ترتیب 179/0 و 075/0 میلی‌گرم در میلی‌لیتر) در تابستان چابهار دیده شد. مقایسه خاصیت ضدباکتریایی نیز نشان داد که بیشترین قطر هاله تشکیل شده مربوط به زمستان جزیره قشم بود، اما مقدار آن از هاله پنی‌سیلین کمتر بود. به طور کلی، بررسی عصاره‌های متانولی خاصیت ضدباکتریایی نشان نداد، در حالی که دارای اثرات کشنده بر لارو آرتمیا بودند. از این رو، Symbiodinium sp. می‌تواند به عنوان یک دینوفلاژله سیتوتوکسیک مورد آزمون‌های اختصاصی‌تر ضدسرطان و ضدتومور قرار گیرد.

کلیدواژه‌ها


طهماسبی م.ح. و زارعی دارکی ب. 1396. اندازه‌گیری نرخ رشد ویژه‌ی داینوفلاژله Symbiodinium sp. جداسازی شده از شقایق دریایی Stichodactyla haddoni. مجله بوم شناسی آبزیان، ۷(۲) : ۱۱۴-۱۰۶.
Camacho F.G., Rodríguez J.G., Miron A.S., Garcia M.C., Belarbi E.H., Chisti Y. and Grima          E.M. 2007. Biotechnological significance of toxic marine dinoflagellates. Biotechnology Advances, 25(2): 176–194.
Chang S.S., Prezelin B.B. and Trench R.K. 1983. Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Marine Biology, 76(3): 219–229.
De Jesus Raposo M.F., De Morais A.M.B. and De Morais R.M.S.C. 2015. Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5): 2967–3028.
Dubinsky Z.V.Y. and Stambler N. 1996. Marine pollution and coral reefs. Global Change Biology, 2(6): 511–526.
Ebrahimi Nigjeh S., Yusoff F.M., Mohamed Alitheen N.B., Rasoli M., Keong Y.S. and Omar A.R.B. 2013. Cytotoxic effect of ethanol extract of microalga, Chaetoceros calcitrans, and its mechanisms in inducing apoptosis in human breast cancer cell line. BioMed Research International, 2013: 1–8 (783690)
Ferrara L. 2020. Dinoflagellates important marine producers of natural bio-compounds with high biotechnological and pharmacological potential. Journal of Food Chemistry and Nanotechnology, 6(3): 138–149.
Finney D.J. 1971. Probit Analysis. Cambridge University Press,UK. 333P.
Fusetani N. and Kem W. 2009. Marine Toxins as Research Tools, Vol.: 46. Springer Science and Business Media, Germany. 259P.
Guillard R.R. and Ryther J.H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229–239.
Jeffrey S.W. and Haxo F.T. 1968. Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. The Biological Bulletin, 135(1): 149–165.
Kim S.K. 2015. Handbook of Marine Microalgae: Biotechnology Advances. Academic Press, USA. 1512P.
Kobayashi J., Ishibashi M., Nakamura H., Hirata Y., Yamasu T., Sasaki T. and Ohizumi Y. 1988. Symbioramide, a novel Ca2+-ATPase activator from the cultured dinoflagellate Symbiodinium sp. Experientia, 44(9): 800–802.
Kobayashi J.I. and Tsuda M. 2004. Amphidinolides, bioactive macrolides from symbiotic marine dinoflagellates. Natural Product Reports, 21(1): 77–93.
Kobayashi J.I., Ishibashi M., Nakamura H., Ohizumi Y., Yamasu T., Hirata Y., Sasaki T., Ohta T. and Nozoe S. 1989. Cytotoxic macrolides from a cultured marine dinoflagellate of the genus Amphidinium. Journal of Natural Products, 52(5): 1036–1041.
Kokou F., Makridis P., Kentouri M. and Divanach P. 2012. Antibacterial activity in microalgae cultures. Aquaculture Research, 43(10): 1520–1527.
LaJeunesse T.C., Lambert G., Andersen R.A., Coffroth M.A. and Galbraith D.W. 2005. Symbiodinium (Pyrrophyta) genome sizes (DNA content) are smallest among dinoflagellates 1. Journal of Phycology, 41(4): 880–886.
Leone A., Lecci R.M., Durante M. and Piraino S. 2013. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Marine Drugs, 11(5): 1728–1762.
Leutou A.S., McCall J.R., York R., Govindapur R.R. and Bourdelais A.J. 2020. Anti-inflammatory activity of glycolipids and a polyunsaturated fatty acid methyl ester isolated from the marine dinoflagellate Karenia mikimotoi. Marine Drugs, 18(3): 1–12 (138).
Malik Z., Hanania J. and Nitzan Y. 1990. New trends in photobiology bactericidal effects of photoactivated porphyrins- An alternative approach to antimicrobial drugs. Journal of Photochemistry and Photobiology (B), 5(3-4): 281–293.
McConnaughey T.A. 2012. Zooxanthellae that open calcium channels: Implications for reef corals. Marine Ecology Progress Series, 460: 277–287.
Mclaughlin J.L., Rogers L.L. and Anderson J.E. 1998. The use of biological assays to evaluate botanicals. Drug Information Journal, 32(2): 513–524.
Nabipour I., Najafi A. and Bou A.A. 2009. Anticancer and cytotoxic compounds from seashells of the Persian Gulf. Iranian South Medical Journal 12(3): 231–237.
Nagai H., Satake M. and Yasumoto T. 1990. Antimicrobial activities of polyether compounds of dinoflagellate origins. Journal of Applied Phycology, 2(4): 305–308.
Nakamura H., Asari T., Ohizumi Y., Kobayashi J.I., Yamasu T. and Murai A. 1993. Isolation of zooxanthellatoxins, novel vasoconstrictive substances from the zooxanthella Symbiodinium sp. Toxicon, 31(4): 371–376.
Nakamura H., Kawase Y., Maruyama K. and Murai A. 1998. Studies on polyketide metabolites of a symbiotic dinoflagellate, Symbiodinium sp.: A new C30 marine alkaloid, zooxanthellamine, a plausible precursor for zoanthid alkaloids. Bulletin of the Chemical Society of Japan, 71(4): 781–787.
NCCLS (National Committee for Clinical Laboratory Standards). 1997. Performance standards for anti-microbial disk susceptibility test. Approved Standard. M100-A6. NCCLS, USA. 13P
Onodera K.I., Konishi Y., Taguchi T., Kiyoto S. and Tominaga A. 2014. Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Marine Drugs, 12(4): 1773–1787.
Onodera K.I., Nakamura H., Oba Y., Ohizumi Y. and Ojika M. 2005. Zooxanthellamide Cs: vasoconstrictive polyhydroxylated macrolides with the largest lactone ring size from a marine dinoflagellate of Symbiodinium sp. Journal of the American Chemical Society, 127(29): 10406–10411.
PolneFuller M. 1991. A novel technique for prpeparation of axenic cultures of Symbiodinium (Pyrrophyta) through selective digestion by amoebae 1. Journal of Phycology, 27(4): 552–554.
Rogers J.E. and Marcovich D. 2007. A simple method for the extraction and quantification of photopigments from Symbiodinium spp. Journal of Experimental Marine Biology and Ecology, 353(2): 191–197.
Samarakoon K.W., Ko J.Y., Rahman S.M., Lee J.H., Kang M.C., Kwon O.N., Lee J.B. and Jeon Y.J. 2013. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae, 28(1): 111–119.
Schoenberg D.A. and Trench R.K. 1980. Genetic variation in Symbiodinium (= Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of Symbiodinium microadriaticum. Proceedings of the Royal Society of London, 207(1169): 405–427.
Senanayake S.N., Ahmed N. and Fichtali J. 2010. Nutraceuticals and Bioactives from Marine Algae. Handbook of Seafood Quality, Safety and Health Applications. Wiley-Blackwell, India. 542P.
Shannon E. and Abu-Ghannam N. 2016. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs, 14(4): 1–23 (81).
Shilpa K., Varun K. and Lakshmi B.S. 2010. An alternate method of natural drug production: Eliciting secondary metabolite production using plant cell culture. Journal of Plant Sciences, 5(3): 222–247.
Sugawara T., Yamashita K., Sakai S., Asai A., Nagao A., Shiraishi T., Imai I. and Hirata T. 2007. Induction of apoptosis in DLD-1 human colon cancer cells by peridinin isolated from the dinoflagellate, Heterocapsa triquetra. Bioscience, Biotechnology and Biochemistry, 71(4): 1069–1072.
Trick C.G., Andersen R.J. and Harrison P.J. 1984. Environmental factors influencing the production of an antibacterial metabolite from a marine dinoflagellate, Prorocentrum minimum. Canadian Journal of Fisheries and Aquatic Sciences, 41(3): 423–432.
Washida K., Koyama T., Yamada K., Kita M. and Uemura D. 2006. Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Letters, 47(15): 2521–2525.
Williams G.P., Babu S., Ravikumar S., Kathiresan K., Prathap S.A., Chinnapparaj S., Marian M.P. and Alikhan S.L. 2007. Antimicrobial activity of tissue and associated bacteria from benthic sea anemone Stichodactyla haddoni against microbial pathogens. Journal of Environmental Biology, 28(4): 789–793.
Yousefzadi M., Riahi-Madvar A., Hadian J., Rezaee F., Rafiee R. and Biniaz M. 2014. Toxicity of essential oil of Satureja khuzistanica: In vitro cytotoxicity and anti-microbial activity. Journal of Immunotoxicology, 11(1): 50–55.