اثرات متقابل تراکم ذخیره‌سازی و سطح پروتئین جیره بر برخی شاخص‌های رشد، خون‌شناسی و پاسخ ایمنی بچه ماهی کپور معمولی (Cyprinus carpio) به باکتری Aeromonas hydrophila در سیستم نوین بیوفلاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

2 دکتری شیلات، سازمان شیلات ایران، بهبهان، ایران

3 دانشیار گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گلستان، ایران

4 کارشناس ارشد شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گلستان، ایران

5 دانشیار گروه دامپزشکی، موسسه کشاورزی و فناوری، دانشگاه رودن، مسکو، روسیه

6 - استادیار گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه زابل، زابل، ایران

10.22124/japb.2022.21823.1459

چکیده

در مطالعه حاضر تاثیر تراکم و سطح پروتئین جیره بر رشد، خون‌شناسی، ایمنی و مقاومت در برابر باکتری Aeromonas hydrophila در ماهی کپور معمولی تحت شرایط بیوفلاک به مدت 60 روز بررسی شد. بچه ماهیان کپور (99/0±09/12 گرم) در 15 مخزن در طرح فاکتوریل 2×2 متشکل از دو تراکم و دو سطح پروتئین در سیستم بیوفلاک شامل تراکم متوسط ذخیره­سازی (10 کیلوگرم در متر مکعب) با 25 و 35 درصد پروتئین (MD25 و MD35) و تراکم بالای ذخیره­سازی (20 کیلوگرم در متر مکعب) با 25 و 35 درصد پروتئین (HD25 و HD35) ذخیره شدند. ماهیان گروه شاهد در آب تمیز با تراکم متوسط (10 کیلوگرم در متر مکعب) و پروتئین 35 درصد بودند. در گروه MD35 رشد ماهیان به طور معنی­داری بیشتر و ضریب تبدیل غذایی در مقایسه با گروه­های دیگر کمتر بود. گلبول­های سفید، مقادیر هموگلوبین و هماتوکریت کاهش و نسبت گلبول­های قرمز در ماهیان پرورش یافته در گروه MD35 افزایش یافت. مقادیر ایمونوگلوبولین M، کمپلمان و فعالیت باکتری‌کشی سرم ماهی در گروه MD35 به طور معنی‌داری بیشتر از گروه‌های دیگر بود. بر اساس نتایج حاضر توصیه می­شود پرورش ماهی کپور معمولی در سیستم بیوفلاک با تراکم 10 کیلوگرم در متر مکعب انجام پذیرد. همچنین سیستم بیوفلاک می­تواند تا 10 درصد کاهش پروتئین را در جیره غذایی در گروه تراکم متوسط جبران کند.

کلیدواژه‌ها

موضوعات


آدینه ح. و هرسیج م. 1397. تاثیر سطوح مختلف بیوفلاک بر کیفیت آب، عملکرد رشد و بازماندگی پست لارو میگوی وانامی (Litopenaeus vannamei). مجله تحقیقات دامپزشکی، 73(4): 401- 393.
آدینه ح.، جعفریان ح.، خادمی­حمیدی م.، کریم­تبار ف.ز. و صداقت ز. 1400. تاثیر کاهش نرخ غذادهی ماهی کپور معمولی (Cyprinus carpio) بر عملکرد رشد و تغذیه، شاخص‌های بیوشیمیایی خون و کیفیت آب در سیستم بیوفلاک در مقایسه با آب تمیز. شیلات، 74(3): 466-453.
بهره­مند م. و سلیمانی­راد آ. 1396. تاثیر تراکم ذخیره‌سازی بر عملکرد رشد، ایمنی و استرس در ماهی کوی (Cyprinus carpio var. Koi Linnaeus, 1758). نشریه علمی بوم‌شناسی آبزیان، 6(4):۲۰-۱۰.
سازمان شیلات ایران. 1398. سالنامه آماری سازمان شیلات ایران (1397-1391). 64ص.
عالی­محمودی م. و محمدی آذرم ح. 1400. اثر نسبت‌های مختلف کربن به ازت و پروتئین غذایی بر ایمنی بچه ماهی کپور معمولی در سیستم بایوفلاک. مجله بهره‌برداری و پرورش آبزیان، 10(3): 13-1.
محمودی خوش­دره­گی م.، حاجی مرادلو ع. و دستار ب. 1398. تعیین سطح مناسب پروتئین جیره ‌غذایی بچه‌ ماهیان کپور‌ معمولی (Cyprinus carpio) بر اساس برخی از پارامترهای رشد، خون و بیوشیمیایی سرم در سیستم بیوفلوک. نشریه پژوهش­های ماهی‌شناسی کاربردی، ۷(۱): 84-61.
Adineh H., Naderi M., Hamidi M. K. and Harsij M. 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology, 95: 440–448.
Adineh H., Naderi M., Yousefi M., Khademi Hamidi M., Ahmadifar E. and Hoseini S.M. 2021. Dietary licorice (Glycyrrhiza glabra) improves growth, lipid metabolism, antioxidant and immune responses, and resistance to crowding stress in common carp, Cyprinus carpio. Aquaculture Nutrition, 27(2): 417–426.
Aksakal E., Ekinci D., Erdogan O., Beydemir S., Alim Z. and Ceyhun S.B. 2011. Increasing stocking density causes inhibition of metabolic-antioxidant enzymes and elevates mRNA levels of heat shock protein 70 in rainbow trout. Livestock Science, 141: 69–75.
Andrade T., Afonso A., Perez-Jimenez A., Oliva-Teles A., De Las Heras V., Mancera J.M. and Costas B. 2015. Evaluation of different stocking densities in a Senegalese sole (Solea senegalensis) farm: Implications for growth, humoral immune parameters and oxidative status. Aquaculture, 438: 6–11.
AOAC. 2005. Official Methods of Analysis. Association of Official Analytical Chemists International, USA.
Avnimelech Y. 2009. Biofloc Technology. A Practical Guide Book. The World Aquaculture Society, USA. 182P.
Azim M.E. and Little D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29–35.
Bakhshi F.H., Najdegerami E., Manaffar R., Tokmechi A., Rahmani Farah K. and Shalizar Jalali A. 2018. Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49(1): 393–403.
Balcazar J.L., De Blas I., Ruiz-Zarzuela I., Cunningham D., Vendrell D. and Muzquiz J.L. 2006. The role of probiotics in aquaculture. Veterinary Microbiology, 114: 173–186.
Balzaretti S., Taverniti V., Guglielmetti S., Fiore W., Minuzzo M., Ngo H.N. and Laws A.P. 2017. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Applied and Environmental Microbiology, 83(3): 1–2 (02702-16).
Barnes A.C., Young F.M., Horne M.T. and Ellis A.E. 2003. Streptococcus iniae: Serological differences, presence of capsule and resistance to immune serum killing. Diseases of Aquatic Organisms, 53(3): 241–247.
Battisti E.K., Rabaioli A., Uczay J., Sutili F.J. and Lazzari R. 2020. Effect of stocking density on growth, hematological and biochemical parameters and antioxidant status of silver catfish (Rhamdia quelen) cultured in a biofloc system. Aquaculture, 524: 1–32 (735213).
Benfey T.J. and Biron M. 2000. Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture, 184(1-2): 167–176.
Braun N., De Lima R.L., Baldisserotto B., Dafre A.L. and De Oliveira Nuner A.P. 2010. Growth, biochemical and physiological responses of Salminus brasiliensis with different stocking densities and handling. Aquaculture, 301(1-4): 22–30.
Crab R., Chielens B., Wille M., Bossier P. and Verstraete W. 2010. The effect of different    carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4): 559–567.
Crab R., Defoirdt T., Bossier P. and Verstraete W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356-357: 351–356.
De Schryver P., Crab R., Defoirdt T., Boon N. and Verstraete W. 2008. The basics of bioflocs technology: The added value for aquaculture. Aquaculture, 277: 125–137.
Ebrahimi A., Akrami R., Najdegerami E.H., Ghiasvand Z. and Koohsari H. 2020. Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system. Aquaculture, 516: 1–9 (734639).
Elayaraja S., Mabrok M., Algammal A., Sabitha E., Rajeswari M.V., Zagorsek K. and Rodkhum C. 2020. Potential influence of jaggery-based biofloc technology at different C: N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 107: 118–128.
FAO. 2020. FAO Yearbook of Fishery and Aquaculture Statistics. Food and Agriculture Organization, Italy. 111P.
Fauji H., Budiardi T. and Ekasari J. 2018. Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc‐based nursery production with different stocking densities. Aquaculture Research, 49(3): 1339–1346.
Goldenfarb P.B., Bowyer F.P., Hall E. and Brosious E. 1971. Reproducibility in the hematology laboratory: The microhematocrit determination. American Journal of Clinical Pathology, 56(1): 35–39.
Heras V.D., Martos-Sitcha J.A., Yufera M., Mancera J.M. and Martinez-Rodriguez G. 2015. Influence of stocking density on growth, metabolism and stress of thicklip grey mullet (Chelon labrosus) juveniles. Aquaculture, 448: 29–37.
Ju Z.Y., Forster I., Conquest L. and Dominy W. 2008. Enhanced growth effects on shrimp, Litopenaeus vannamei from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition, 14: 533–543.
Kajita Y., Sakai M., Atsuta S. and Kobayash M. 1990. The immunonodulatory effects of levamisole on rainbow trout, Oncorhynchus mykiss. Fish Pathology, 25(2): 93–98.
Kishawy A.T., Sewid A.H., Nada H.S., Kamel M.A., El-Mandrawy S.A., Abdelhakim T. and Ibrahim D. 2020. Mannan-oligosaccharides as a carbon source in Biofloc boost dietary plant protein and water quality, growth, immunity and Aeromonas hydrophila resistance in Nile tilapia (Oreochromis niloticus). Animals, 10(10): 1–24 (1724).
Lee R.G., Foerster J., Jukens J., Paraskevas F., Greer J.P. and Rodgers G.M. 1998. Wintrobe’s Clinical Hematology. Lippincott Williams and Wilkins, USA. 2312P.
Liu G., Ye Z., Liu D., Zhao J., Sivaramasamy E., Deng Y. and Zhu S. 2018. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish and Shellfish Immunology, 81: 416–422.
Llorente M.T., Martos A. and Castano A. 2002. Detection of cytogenetic alterations and blood cell changes in natural populations of carp. Ecotoxicology, 11(1): 27–34.
Long L., Yang J., Li Y., Guan C. and Wu F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135–141.
Maita M. 2007. Fish health assessment. P: 10–34. In: Nakagawa H., Sato M. and Gatlin D.M. (Eds.). Dietary Supplements for the Health and Quality of Cultured Fish. CAB International, UK.
Mohammadi G., Rafiee G., Tavabe K.R., Abdel-Latif H.M. and Dawood M.A. 2021. The enrichment of diet with beneficial bacteria (single-or multi-strain) in biofloc system enhanced the water quality, growth performance, immune responses, and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture, 539: 736640.
Najdegerami E.H., Bakhshi F. and Lakani F.B. 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry, 42(2): 457–465.
North B.P., Ellis T., Turnbull J.F., Davis J. and Bromage N.R. 2006. Stocking density practices of commercial UK rainbow trout farms. Aquaculture, 259(1-4): 260–267.
Pathiratne A. and Rajapakshe W. 1998. Hematological changes associated with the epizootic ulcerative syndrome in the Asian cichlid fish, Etroplus suratensis. Asian Fisheries Science, 11: 203–212.
Rehulka J. 2000. Influence of astaxanthin on growth rate, condition, and some blood indices of rainbow trout, Oncorhynchus mykiss. Aquaculture, 190(1-2): 27–47.
Reyes-Becerril M., Tovar-Ramirez D., Ascencio-Valle F., Civera-Cerecedo R., Gracia-Lopez V. and Barbosa-Solomieu V. 2008. Effects of dietary live yeast Debaryomyces hansenii on the immune and antioxidant system in juvenile leopard grouper Mycteroperca rosacea exposed to stress. Aquaculture, 280: 39–44.
Ross L.G. and Ross B. 2008. Anaesthetic and Sedative Techniques for Aquatic Animals. John Wiley and Sons, USA. 222P.
Sunyer J.O. and Tort L. 1995. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Veterinary Immunology and Immunopathology, 45: 333–345.
Swaminathan T.R., Rathore G., Abidi R. and Kapoor D. 2004. Detection of Aeromonas hydrophila by polymerase chain reaction. Indian Journal of Fisheris, 51(2): 251–254.
Tokur B., Ozkutuk S., Atici E., Ozyurt G. and Ozyurt C.E. 2006. Chemical and sensory quality changes of fish fingers, made from mirror carp (Cyprinus carpio L., 1758), during frozen storage (-18 C). Food Chemistry, 99(2): 335–341.
Tort L. 2011. Stress and immune modulation in fish. Developmental and Comparative Immunology, 35: 1366–1375.
Wang N., Xu X. and Kestemont P. 2009. Effect of temperature and feeding frequency on growth performances, feed efficiency and body composition of pikeperch juveniles (Sander lucioperca). Aquaculture, 289: 70–73.
Wei Y., Liao S.A. and Wang A.L. 2016. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465: 88–93.
Widanarni W., Ekasari J. and Maryam S. 2012. Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati Journal of Biosciences, 19(2): 73–80.
Xu W.J. and Pan L.Q. 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412: 117–124.
Xu W.J., Pan L.Q., Zhao D.H. and Huang J. 2012. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350: 147–153.
Zaki M.A., Alabssawy A.N., Nour A.E.A.M., El Basuini M.F., Dawood M.A., Alkahtani S. and Abdel-Daim M.M. 2020. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquaculture Reports, 16: 1–8 (10022).
Zare R., Bahmani M., Yavari V., Kazemi R., Fazeli N., Poordehghany M. and Mohamadian T. 2012. Effects of rearing density on leukocytes and plasma cortisol level of Siberian sturgeons (Acipenser baerii). Iranian Veterinary Journal, 8(2): 22–32.
Zhao Z.G., Xu Q.Y., Luo L., Yin J.S. and Wang C.A. 2013. Effect of adding carbon source on growth of fish and water quality in Songpu mirror carp (Cyprinus specularis Songpu) pond. Journal of Northeast Agricultural University, 44: 105–112.