تغییرات فیزیولوژیکی خون ماهی کپور معمولی (Cyprinus carpio) نگهداری شده با تراکم‌های مختلف در سیستم بیوفلاک همراه با استرس حاد هیپوکسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد شیلات، گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

2 دانشیار گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

3 استادیار گروه زیست‌شناسی، دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

10.22124/japb.2023.25520.1513

چکیده

ماهی کپور معمولی با تراکم ۶، ۱۲، ۲۴ و ۴۸ کیلوگرم در متر مکعب (به ترتیب D1، D2، D3 و D4) در محیط بیوفلاک همراه با استرس هیپوکسی حاد به منظور بررسی واکنش فیزیولوژیکی ماهیان ذخیره­سازی شد. در مرحله اول ماهیان در شرایط بیوفلاک به مدت 28 روز نگهداری و سپس در مرحله دوم آزمایش ماهیان به طور مجزا در ۱۲ مخزن با حجم آب ۲۵ لیتر (۴ تیمار × ۳ تکرار) با شرایط یکسان زیستی تقسیم شدند و فقط تراکم ذخیره­سازی ماهی متغیر بود. افزایش تراکم در تیمار D4 به طور معنی­داری تعداد گلبول‌های سفید و قرمز، هموگلوبین و هماتوکریت را افزایش داد، اما لنفوسیت و آنزیم­های کبدی کاهش یافت (05/0P<). تراکم ذخیره­سازی به طور معنی‌داری باعث افزایش ایمونوگلوبولین کل، لیزوزیم و کمپلمان 50 در تیمارهای D1 و D2 (6 و 12 کیلوگرم در متر مکعب) شد (05/0P<). شاخص استرس افزایش معنی­داری در تیمارهای D3 و D4 داشت (05/0P<). تراکم ذخیره­سازی در تیمارهای D1 و D2 به ­طور معنی­داری آنزیم سوپراکسید دیسموتاز را افزایش و آنزیم مالون­دی­آلدئید را کاهش داد (05/0P<). به طور کلی برای کنترل استرس هیپوکسی در محیط بیوفلاک، تراکم ذخیره سازی بین ۶ تا ۱۲ کیلوگرم در متر مکعب توصیه می­شود تا بتوان بین یک تا دو ساعت مشکل را حل کرد.

کلیدواژه‌ها

موضوعات


Abdel-Tawwab M., Hagras A.E., Elbaghdady H.M. and Monier M.N. 2015. Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): Growth performance, whole-body composition, and innate immunity. Aquaculture International, 23: 1261–1274. doi: 10.1007/s10499-01 5-9882-y
Abdel-Tawwab M., Hagras A.E., Elbaghdady H.M. and Monier M.N. 2014. Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile tilapia, Oreochromis niloticus. Journal of Applied Aquaculture, 26: 340–355. doi: 10.1080/10454438.2014.959830
Abiri S.A., Chitsaz H., Najdegerami E.H., Akrami R. and Jalali A.S. 2022. Influence of wheat and rice bran fermentation on water quality, growth performance, and health status of Common carp (Cyprinus carpio L.) juveniles in a biofloc-based system. Aquaculture, 555: 738168. doi: 10.1016/j.aquaculture. 2022.738168
Adineh H., Naderi M., Hamidi M. K. and Harsij M. 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology, 95: 440–448. doi: 10.1016/j.fsi.2019.10.057
Adineh H., Naderi M., Harsij M., Shirangi S.A., Yousefi M. and Hoseinifar S.H. 2023a. Interactive effects of culture systems (biofloc and clear water) and dietary protein levels on growth, digestive activity, mucosal immune responses, antioxidant status, and resistance against salinity stress in the Caspian roach (Rutilus caspicus) fry. Aquaculture, 570: 739418. doi: 10.1016/j.aquaculture.2023.739418
Adineh H., Naderi M., Jafaryan H., Khademi Hamidi M., Yousefi M. and Ahmadifar E. 2023b. Interactive effects of stocking density and dietary protein level on some growth parameters, hematology and immune response of juvenile common carp (Cyprinus carpio) to Aeromonas hydrophila in modern biofloc system. Aquatic Physiology and Biotechnology, 10(4): 95–121. doi: 10.22124/japb. 2022.21823.1459
Adineh H., Naderi M., Jafaryan H., Khademi Hamidi M., Yousefi M. and Ahmadifar E. 2022. Effect of stocking density and dietary protein level in biofloc system on the growth, digestive and antioxidant enzyme activities, health, and resistance to acute crowding stress in juvenile common carp (Cyprinus carpio). Aquaculture Nutrition, 2022: 1–12 (9344478). doi: 10.1155/2022/93444 78
Aghabarai M., Abdali S. and Yousefi Jourdehi A. 2023. The effect of biofloc system performance on some hemological and immuno-logical indices in beluga (Huso huso). Journal of Aquaculture Development, 17(3): 21–34. doi: 10.22034/17.3.21
Aghabarari M., Abdali S. and Yousefi Jourdehi A. 2021. The effect of biofloc system on water quality, growth and hematological indices of juvenile great sturgeon (Huso huso). Iranian Journal of Fisheries Sciences, 20(5): 1467–1482. doi: 10.22092/ijfs.2021.125140
Ahmadi Z., Akrami R. and Kharkan Ghamsari M. 2019. Effect of stocking density and feeding rate on growth, hematological parameters and water quality in rearing of juvenile beluga (Huso huso). Journal of Applied Ichthyological Research, 6(3): 115–128.
APHA. 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), USA. 541P.
Avnimelech Y. and Kochba M.­ 2009. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using N-15 tracing. Aquaculture, 287: 163–168. doi: 10.1016/j.aquaculture.2008.10.009
Azim M.E. and Little D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29–35. doi: 10.1016/j.aquaculture.2008.06.036
Bagherzadeh Lakani F., Sattari M., Kazemi R., Yazdani Sadati M.A., Pourdehghani M. and Ashouri G. 2015. Effects of hypoxia, normoxia and hyperoxia on hematological and biochemical parameters of two weight classes in farmed great sturgeon (Huso huso). Journal of Oceanography, 6(22): 59–68.
Bagherzadeh Lakani F., Sattari M., Sharifpour I., Kazemi R. and Hallajian A. 2016. Effects of different oxygen levels on the spleen in two weight groups of beluga (Huso huso). Journal of Aquaculture Development, 10(2):  21–30.
Baluchnejadmojarad T., Roghani M. and Mafakheri M. 2010. Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: Involvement of estrogen receptors and oxidative stress. Neuroscience Letters, 480(3): 206–210. doi: 10.1016/j.neu let.2010.06.038
Bani A. and Haghi Vayghan A. 2011. Temporal variations in haematological and biochemical indices of the Caspian kutum, Rutilus frisii kutum. Ichthyological Research, 58: 126–133. doi: 10.100 7/s10228-010-0199-6
Barreto R.E. and Volpato G.L. 2006. Stress responses of the fish Nile tilapia subjected to electroshock and social stressors. Brazilian Journal of Medical and Biological Research, 39: 1605–1612. doi: 10.1590/S0100-879X2006 001200012
Borges A., Scotti L.V., Siqueira D.R., Jurinitz D.F. and Wassermann G.F. 2004. Hematologic and serum biochemical values for jundia (Rhamdia quelen). Fish Physiology and Biochemistry, 30: 21–25. doi: 10.1007/s10695-004-5000-1
Braun N., Lima De Lima R., Baldisserotto B., Dafre A.L. and Pires De Oliveira Nuner A. 2010. Growth, biochemical and physiological responses of Salminus brasiliensis with different stocking densities and handling. Aquaculture, 301: 22–30. doi: 10.1016/j.aquaculture.2010.01.0 22
Crab R., Chielens B., Wille M., Bossier P. and Verstraete W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4): 559–567. doi: 10.1111/j.1365-2109.2009.02353.x
Dagoudo M., Qiang J., Bao J.W., Tao Y.F., Zhu H.J., Tumukunde E.M. and Xu P. 2021. Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli) juveniles. Aquaculture International, 29(5): 2181–2196. doi: 10.1007/s10499-021-00742-1
Dawood M.A. 2021. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Reviews in Aquaculture, 13(1): 642–663. doi: 10.1111/raq.12492
Dobsikova R., Svobodova Z., Blahova J., Modra H. and Velisek J. 2009. The effect of transport on biochemical and haematological indices of common carp (Cyprinus carpio L.). Czech Journal of Animal Science, 54(11): 510–518. doi: 10.17221/52/2009-CJ AS
Ebrahimi A., Akrami R., Najdegerami E.H., Ghiasvand Z. and Koohsari H. 2020. Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system. Aquaculture, 516: 1–9 (734639). doi: 10.1016/j.aquaculture. 2019.734639
Ellis A.E. 1990. Lysozyme assays. P: 101–103. In: Stolen J.S., Fletcher T.C., Anderson D.P., Robertson B.S., Van Muiswinkel W.B. (Eds.). Techniques in Fish Immunology. SOS Publications, USA.
Emerenciano M., Gaxiola G. and Cuzon G. 2013. Biofloc Technology: A review for aquaculture application and animal food industry. Biomass Now-Cultivation and Utilization, 12: 301–328. doi: 10.5772/53902
Evans J.J., Shoemaker C.A. and Klesius P.H. 2003. Effects of sublethal dissolved oxygen stress on blood glucose and susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. Journal of Aquatic Animal Health, 15: 202–208. doi: 10.1577/H03-024
Feldman B.F., Zinkl J.G. and Jian N.C. 2000. Schalm's Veterinary Hematology. Lippincott Williams and Wilkins Publication, USA. 1393P. doi: 10.1002/9781119500537
Haghparast M.M., Alishahi M., Ghorbanpour M. and Shahriari A. 2020. Evaluation of hemato-immunological parameters and stress indicators of common carp (Cyprinus carpio) in different C/N ratio of biofloc system. Aquaculture International, 28(6): 2191–2206. doi: 10.1007/s10499-02 0-00578-1
Ju Z.Y., Forster I., Conquest L. and Dominy W. 2008. Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition, 14(6): 533–543. doi: 10.1111/j.1365-2095.2007. 00559.x
Kuhlwein H., Merrifield D.L., Rawling M.D., Foey A.D. and Davies S.J. 2014. Effects of dietary β-(1,3)(1,6)-D-glucan supplement-ation on growth performance, intestinal morphology and haemato‐immunological profile of mirror carp (Cyprinus carpio L.). Journal of Animal Physiology and Animal Nutrition, 98(2): 279–289. doi: 10.1111/jpn.12078
Kvamme B.O., Gadan K., Finne-Fridell F., Niklasson L., Sundh H., Sundell K., Taranger G.L. and Evensen O. 2013. Modulation of innate immune responses in Atlantic salmon by chronic hypoxia-induced stress. Fish and Shellfish Immunology, 34: 55–65. doi: 10.1016/j.fsi.2012.10.006
Mallya Y.J. 2007. The effects of dissolved oxygen on fish growth in aquaculture. Final Project. Fisheries Training Programme, The United Nations University, Iceland. 30P.
Manduca L.G., Da Silva M.A., De Alvarenga E.R., De Oliveira Alves G.F., De Araujo Fernandes A.F., Assumpcao A.F. and Turra E.M. 2020. Effects of a zero exchange biofloc system on the growth performance and health of Nile tilapia at different stocking densities. Aquaculture, 521: 1–38 (735064). doi: 10.1016/j.aquaculture. 2020.735064
Marklund S. and Marklund G. 1974. Involvement of the superoxyde anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxyde dismutase. European Journal of Biochemistry, 47: 469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x
Menaga M., Felix S., Charulatha M., Gopalakannan A. and Panigrahi A. 2019. Effect of in-situ and ex-situ biofloc on immune response of genetically improved farmed tilapia. Fish and Shellfish Immunology, 92: 698–705. doi: 10.1016/j.fsi.2019.06.031
Mohammadian T., Mashjoor S., Lotfi S., Bakhshi H. and Ghanei-Motlagh R. 2022. Mutual effect of culture density and diet administration of pomegranate peel (Punica granatum L.) extracts on biochemical and antioxidant parameters of common carp (Cyprinus carpio) blood serum. Journal of Fisheries Science and Technology, 11(3): 240–254.
Nazarpour S. and Mohammadiazarm H. 2023. Optimizing stocking density in biofloc culture of juvenile common carp (Cyprinus carpio) using growth and immune-biochemical indices as indicators. Aquaculture Studies, 23(6): 1–7 (AQUAST1223). doi: 10.4194/AQU AST1223
Ni M., Wen H., Li J., Chi M., Ren Y., Song Z. and Ding H. 2014. Two HSPs gene from juvenile Amur sturgeon (Acipenser schrenckii): cloning, characterization and expression pattern to crowding and hypoxia stress. Fish Physiology and Biochemistry, 40(6): 1801–1816. doi: 10.1007/s10695-014-9969-9
North B.P., Ellis T., Turnbull J.F., Davis J. and Bromage N.R. 2006. Stocking density practices of commercial UK rainbow trout farms. Aquaculture, 259(1-4), 260-267. doi: 10.1016/j.aquaculture.2006. 05.043
Parker T.M. 2013. Effects of the interaction of environmental factors (hypoxia and ammonia) on fish. M.Sc. Thesis, The Ohio State University, USA. 72P.
Pathiratne A. and Rajapakshe W. 1998. Hematological changes associated with the epizootic ulcerative syndrome in the Asian cichlid fish, Etroplus suratensis. Asian Fisheries Science, 11: 203–212.
Pickering A.D. 1993. Growth and stress in fish production. Aquaculture, 111: 51–63. doi: 10.10 16/B978-0-444-81527 9.50010-5
Qoljaei B., Adineh H., Harsij M. and Shirangi S.A. 2023. Effect of carbon and nitrogen ratio (C:N) manipulation on growth performance, immune response and stress index of common carp (Cyprinus carpio) acute exposure to ammonia stress in biofloc system. Journal of Fisheries, 76(2): 265–278. doi: 10.22059/jfisheries.20 23.353714.1365
Rafatnezhad S., Falahatkar B. and Tolouei Gilani M.H. 2008. Effects of stocking density on haemato-logical parameters, growth and fin erosion of great sturgeon (Huso huso) juveniles. Aquaculture Research, 39(14): 1506–1513. doi: 10.1111/j.1365-2109.2008.02020.x
Rezakhani S., Mohammadizadeh F., Khara H., Hooshang Bahri A. and Ahmadnezhad M. 2021. Evaluation of oxygen changes on survival, some stress indices and hematological and immunological factors in Caspian Sea salmon (Salmo trutta caspius). Aquatic Physiology and Biotechnology, 9(1): 77–96. doi: 10.22124/japb.20 21.17139.1388
Saberi M., Adineh H., Harsij M., Jafaryan H. and Patimar R. 2022. Evaluation of chronic and acute hypoxia stress on the immune and antioxidant system of common carp in biofloc system. Journal of Utilization and Cultivation of Aquatics, 11(2): 49–61. doi: 10.220 69/japu.2022.20047.1641
Seo J. and Park J. 2022. Does stocking density affect growth performance and hematological parameters of juvenile olive flounder Paralichthys olivaceus in a recirculating aquaculture system? Animals, 13(1): 1–12 (44). doi: 10.3390/ani13010044
Shourbela R.M., Khatab S.A., Hassan M.M., Van Doan H. and Dawood M.A. 2021. The effect of stocking density and carbon sources on the oxidative status, and nonspecific immunity of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Animals, 11(1): 1–13 (184). doi: 10.3390/ani11010184
Sunyer J.O. and Tort L. 1995. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Veterinary Immunology and Immunopathology, 45: 333–345. doi: 10.1016/0165-2427(94)05430-Z
Tawwab M.A., Mousa M., Sharaf S. and Ahmad M. 2005. Effect of crowding stress on some physiological functions of Nile tilapia, Oreochromis niloticus (L.) fed different dietary protein levels. International Journal of Zoology Research, 1(1): 41–47. doi: 10.5555/ 20073105537
Terova G., Rimoldi S., Cora S., Bernardini G., Gornati R. and Saroglia M. 2008. Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture, 279: 150–159. doi: 10.1016/j.aquaculture.2008.03.041
Timmons M.B., Ebeling J.M., Wheaton F.W., Summerfelt S.T. and Vinci B.J. 2002. Recirculating Aquaculture Systems. Cayuga Aqua Ventures, USA. 769P.
Trenzado C., Morales A. and Higuera M. 2006. Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high stress responsiveness. Aquaculture, 258: 583–593. doi: 10.1016/j.aquaculture. 2006.03.045
Wang M., Wu F., Xie S. and Zhang L. 2021. Acute hypoxia and reoxygenation: Effect on oxidative stress and hypoxia signal transduction in the juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 531: 1–10 (735903). doi: 10.1016/j.aquaculture.2020.7359 03
Wawrowski A., Gerlach F., Hankeln T. and Burmester T. 2011. Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. Journal of Comparative Physiology (B), 181(2): 199–208. doi: 10.1007/s003 60-010-0518-2
Witeska M. 2005. Stress in fish hematological and immunological effects of heavy metals. Electronic Journal of Ichthyology, 1(1): 35–41.
Xu W.J. and Pan L.Q. 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412: 117–124. doi: 10.1016/j.aquaculture.2013. 07.017
Yang Y., Wang Z., Wang J., Lyu F., Xu K. and Mu W. 2021. Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. Fish Physiology and Biochemistry, 47(4): 919–938. doi: 10.1007/s106 95-021-00947-4
Zaki M.A., Alabssawy A.N., Nour A.E.A.M., El Basuini M.F., Dawood M.A., Alkahtani S. and Abdel-Daim M.M. 2020. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquaculture Reports, 16: 1–8 (100282). doi: 10.1016/j.aqrep.2020. 100282
Zhao Z.G., Xu Q.Y., Luo L., Yin J.S. and Wang C.A. 2013. Effect of adding carbon source on growth of fish and water quality in Songpu mirror carp (Cyprinus specularis Songpu) pond. Journal of Northeast Agricultural University, 44: 105–112. doi: 10.19720/j.cnki.is sn.1005-9369.2013.09.020