بررسی هیدروکربن‌های آروماتیک چندحلقه‌ای در رسوبات و بافت توتیای Echinometra mathaeiدر سواحل شمال خلیج فارس، استان بوشهر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زیست‌شناسی دریا، گروه علوم دریایی و شیلات، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار گروه علوم دریایی و شیلات، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استاد مرکز تحقیقات بیوفیزیک و بیوشیمی، دانشگاه تهران، تهران، ایران

10.22124/japb.2023.24635.1499

چکیده

خلیج فارس دریایی داخلی و نیمه بسته با شرایط بوم‌شناختی خاص است و میزان آلودگی نفتی در آن بیش از متوسط سطح جهانی مورد قبول محیط زیست دریایی است. خارپوستان به دلیل کفزی بودن، بیشتر در معرض آلودگی رسوبات هستند. این مطالعه در مناطق جزرومدی سواحل استان بوشهر شامل ساحل شغاب، اولی، شیرینو، نای‌بند، اسکله T و شمال جزیره خارک انجام شد تا میزان تجمع آلودگی در رسوب و بافت توتیای Echinometra mathaei تعیین شود. نمونه‌برداری در دو فصل سرد و گرم (1394-1393) صورت پذیرفت. در آزمایشگاه، میزان و نوع هیدروکربن‌های آروماتیک چندحلقه‌ای (PAH) با روش کروماتوگرافی و GC-MS بررسی شد. بیشترین غلظت ترکیبات PAH رسوبات در اسکله T خارک مربوط به نفتالین (7/913 نانوگرم در گرم وزن خشک) در فصل سرد و بیشترین غلظت ترکیبات PAH بافت در اسکله T خارک مربوط به فنانترین (5/371 نانوگرم در گرم وزن خشک) در فصل گرم اندازه‌گیری شد. هیچ اختلاف معنی‌داری بین میزان PAH رسوبات و بافت‌ها مشاهده نشد (05/0P>). روند تجمع PAH در رسوبات و بافت‌ها افزایشی بود. میزان PAH رسوبات در تمامی مناطق مطالعه حاضر (3059-441 نانوگرم در گرم) بالاتر از استانداردهای جهانی تعیین شده در رسوبات (197 میکروگرم در کیلوگرم) بود که نشان از آلودگی بیشتر مناطق بررسی شده است. مقایسه تجمع آلودگی در بافت توتیا با دیگر آبزیان حاکی میزان بالاتر PAHها در بافت‌های گونه‌های کفزی است. این مهم، ناشی از محل زندگی و نوع تغذیه این موجودات است و نشان از اهمیت این گونه و بررسی آن در زمینه‌های سم‌شناسی زیست‌محیطی دارد.

کلیدواژه‌ها

موضوعات


Abd El Moneam N.M., Abd El Maguid N.E., El-Sikaily A.M., Zaki M.G. and Sheradah M.A. 2016. Biomarkers and ultra structural evaluation of marine pollution by polycyclic aromatic hydrocarbons. Journal of Environmental Protection, 7(10): 1283–1304. doi: 10.4236/jep.2016.71 0113
Abdel-Rahman M.S., Skowronski G.A. and Turkall R.M. 2002. Assessment of the dermal bio-availability of soil-aged benzo [a]pyrene. Human and Ecological Risk Assessment, 8(2): 429–441. doi: 10.1080/20028091056999
Abdolahpur Monikh F., Hosseini M., Kazemzadeh Khoei J. and Ghasemi A.F. 2014. Polycyclic aromatic hydrocarbons levels in sediment, benthic, benthopelagic and pelagic fish species from the Persian Gulf. International Journal of Environmental Research, 8(3): 839–848.
Agardy T. and Alder J. 2005. Coastal systems. In: Millennium Ecosystem Assessment (Eds.). Ecosystems and Human Well-Being, Vol. 1: Current State and Trends. Island Press, USA. 513–549.
Albarano L., Zupo V., Guida M., Libralato G., Caramiello D., Ruocco N. and Costantini M. 2021. PAHs and PCBs affect functionally intercorrelated genes in the sea urchin paracentrotus lividus embryos. International Journal of Molecular Sciences, 22(22): 1–15 (12498). doi: 10.3390/ ijms222212498
Angelini C., Amaroli A., Falugi C., Di Bella G. and Matranga V. 2003. Acetylcholinesterase activity is affected by stress conditions in Paracentrotus lividus coelo-mocytes. Marine Biology, 143: 623–628. doi: 10.1007/s00227-003-1 120-x
Arufe M.I., Arellano J.M., Garcia L., Albendin G. and Sarasquete C. 2006. Cholinesterase activity in gilthead seabream (Sparus aurata) larvae: Characterization and sensitivity to the organophosphate azinphosmethyl. Aquatic Toxicology, 84: 328–336. doi: 10.1016/j.aquatox.2007.06.009
Bellas J., Rial D., Valdes J., Vidal-Linan L., Bertucci J.I., Muniategui S., Leon V.M. and Campillo J.A. 2022. Linking biochemical and individual-level effects of chlorpyrifos, triphenyl phosphate, and bisphenol A on sea urchin (Paracentrotus lividus) larvae. Environmental Science and Pollution Research, 29(30): 46174–46187. doi: 10.1007/s11356-022-19099-w
Bihari N. and Fafandel M. 2004. Interspecies differences in DNA single strand breaks caused by benzo(a)pyrene and marine environment. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis, 552: 209–217. doi: 10.1016/j.mrfmmm.20 04.06.022
Binelli A., Ricciardi F., Riva C. and Provini A. 2006. New evidences for old biomarkers: Effects of several xenobiotics on EROD and AChE activities in zebra mussel (Dreissena polymorpha). Chemosphere, 62: 510–519. doi: 10.1016/j.chemosphere.2005.06.033
Buznikov G.A., Kost A.N., Kucherova N.F., Mndzhoyan A.L., Suvorov N.N. and Berdysheva L.V. 1970. The role of neurohumours in early embryo-genesis: III. Pharmacological analysis of the role of neuro-humours in cleavage divisions. Development, 3(3): 549–569. doi: 10.1242/dev.23.3.549
Canli M. and Atli G. 2003. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121: 129–136. doi: 10.1016/S0269-7491(02)00194-X
Chimezie A., Ogbechea A., Palmerb P. and Cokera H. 2005. Determination of polynuclear aromatic hydrocarbons in marine samples of Siokolo Fishing Settlement. Journal of Chromatography (A), 1073: 323–330. doi: 10.1016/j.chroma.2004.10. 014
Corsi I., Tabaku A., Nuro A., Beqiraj S., Marku E., Perra G., Tafaj L., Baroni D., Bocari D., Guerranti C. and Cullaj A. 2011. Ecotoxicological assessment of Vlora Bay (Albania) by a biomonitoring study using an integrated approach of sublethal toxicological effects and contaminant levels in bioindicator species. Journal of Coastal Research, (58): 116–120. doi: 10.21 12/SI_58_11
Cunha I., Garcia L.M. and Guilhermino L. 2005. Sea urchin (Paracentrotus lividus) glutathione S-transferase and cholinesterase activities as biomarkers of environmental contamination. Journal of Environmental Monitoring, 7: 288–294. doi: 10.10 39/B414773A
Davies I.M., Gillibrand P.A., McHenery J.G. and Rae G.H. 1998. Environmental risk of ivermectin to sediment dwelling organisms. Aquaculture, 163: 29–46. doi: 10.1016/S0044-8486(98)002 11-7
Den Besten P.J., Valk S., Van Weerlee E., Nolting R.F., Postma J.F. and Everaarts J.M. 2001. Bioaccumulation and biomarkers in the sea star Asterias rubens (Echinodermata: Asteroidea): A North Sea field study. Marine Environmental Research, 51(4): 365–387. doi: 10.1016/S0141-1136 (00)00134-3
ECETOC. 2007. Intelligent testing strategies in ecotoxicology: Mode of action approach for specifically acting chemicals. Technical Report, No. 102. European Centre for Ecotoxicology and Toxicology of Chemicals, Belgium. 151P.
Everaarts J.M., Den Besten P.J., Hillebrand M.T.J., Halbrook R.S. and Shugart L.R. 1998. DNA strand breaks, cytochrome P-450-dependent monooxygenase system activity and levels of chlorinated biphenyl congeners in the pyloric caeca of the seastar (Asterias rubens) from the North Sea. Ecotoxicology, 7: 69–79. doi: 10.1023/A:1008811802432
Gustafson T. and Toneby M. 1970. On the role of serotonin and acetylcholine in sea urchin morphogenesis. Experimental Cell Research, 62: 102–117. doi: 10.101 6/0014-4827(79)90512-3
Hadjizadeh Zaker N. 2022. Aliphatic and aromatic hydrocarbons in the coastal sediments of the Kharg Island in the Persian Gulf. Pollution, 8(2): 705–716. doi: 10.22 059/poll.2022.335368.1286
Hickman C.P. and Robbers L.S. 2003. Animal Diversity. Mac Grow Hill, USA. 447P.
Honda M. and Suzuki N. 2020. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Environmental Research and Public Health, 17(4): 1–23 (1363). doi: 10.3390/ijerph17041363
James D.B. 2001. Twenty sea cucumbers from seas around India. Naga, International Center for Living Aquatic Resources Management, 24: 4–8.
Jha A.N., Cheung V.V., Foulkes M.E., Hill S.J. and Depledge M.H. 2000. Detection of genotoxins in the marine environment: adoption and evaluation of an integrated approach using the embryo-larval stages of the marine mussel, Mytilus edulis. Mutation Research: Genetic Toxicology and Environmental Mutagenesis, 464: 213–228. doi: 10.1016/S1383-5718 (99)00188-6
Keshavarzifard M., Moore F., Keshavarzi B. and Sharifi R. 2017. Polycyclic aromatic hydrocarbons (PAHs) in sediment and sea urchin (Echinometra mathaei) from the intertidal ecosystem of the northern Persian Gulf: Distribution, sources, and bioavailability. Marine Pollution Bulletin, 123(1-2): 373–380. doi: 10.1016/j.marpolbul.2017.09.008
Martin Neil C. 2009. Marine pollution and echinoderms: A biomarker study integrating different levels of biological organization. Ph.D. Thesis, University of Plymouth, England. 257P. doi: 10.24382/3680
Menchaca I., Rodriguez J.G., Borja A., Jesus Belzunce‐Segarra M., Franco J., Garmendia J.M. and Larreta J. 2014. Determination of polychlorinated biphenyl and polycyclic aromatic hydrocarbon marine regional sediment quality guidelines with the European water framework directive. Chemistry and Ecology, 30(8): 693–700. doi: 10.1080/02757540.2014.917175
Nateghi A. 2013. Study of echinoderm diversity in ecologically significant islands of the Persian Gulf (In Persian). Ph.D. Thesis, Islamic Azad University, Iran. 225P.
Pesando D., Huitorel P., Dolcini V., Angelini C., Guidetti P. and Falugi C. 2003. Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean Sea urchin, Paracentrotus lividus. Marine Environmental Research, 55: 39–57. doi: 10.1016/S0141-1136 (02)00215-5
Rahmanpour S., Ghafourian H., Hashtroodi S.M., Rabbani M., Mahdinia A., Darvish Bastami K. and Azimi A. 2012. Investigation of polycyclic aromatic hydrocarbons (PAHs) in Sediments of the Strait of Hormuz, Persian Gulf. Scientific Research Journal of Oceanography, 3(10): 37–44.
Regoli F., Giuliani M.E., Benedetti M. and Arukwe A. 2011. Molecular and biochemical biomarkers in environmental monitoring: A comparison of biotransformation and antioxidant defense systems in multiple tissues. Aquatic Toxicology, 105(3-4): 56–66. doi: 10.1016/j.aquatox.2011.06.0 14
Rojas A. and Morales M.A. 2004. Advanced glycation and endothelial functions: A link towards vascular complications in diabetes. Life Sciences, 76(7): 715–730. doi: 10.1016/j.lfs.2004.09. 011
Rostami S., Amini Rad H. and Abasi A. 2018. Assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the coast of Pars special economic energy zone (Assaluyeh port). Journal of Environmental Sciences, 16(3): 217–232.
Safaei A. and Mahmoudi M. 2014. Concentration of polycyclic aromatic hydrocarbons in coastal sediments of Bushehr. Environmental Science and Technology, 16(3): 25–33.
Schwarzenbach R.P., Escher B.I., Fenner K., Hofstetter T.B., Johnson C.A., Von Gunlen U. and Wehrli B. 2006. The challenge of micropollutants in aquatic systems. Science, 313: 1072–1077. doi: 10.1126/science.112 729
Tolosa I., De Mora S.J., Fowler S.W., Villeneuve J.P., Bartocci J. and Cattini C. 2005. Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman. Marine Pollution Bulletin, 50(12): 1619–1633. doi: 10.1016/j.marpolb ul.2005.06.029
Tuvikene A. 1995. Responses of fish to polycyclic aromatic hydrocarbons (PAHs). Annales Zoologici Fennici, 32: 295–309.
Valavanidis A., Vlachogianni T., Dassenakis E. and Scoullos M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 46: 178–189. doi: 10.1016/j. ecoenv.2005.03.013
Van Der Oost R., Beyer J. and Vermeulen N. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13: 57–149. doi: 10.1016/S1382-6689(02)00126-6
Vijayanand M., Ramakrishnan A., Subramanian R., Issac P.K., Nasr M., Khoo K.S., Rajagopal R., Greff B., Wan Azelee N.I., Jeon B.H., Chang S.W. and Ravindran B. 2023. Polyaromatic hydrocarbons (PAHs) in the water environment: A review on toxicity, microbial biodegradation, systematic biological advance-ments, and environmental fate. Environmental Research, 227: 115716. doi: 10.1016/j.envres.2023. 115716
Yuxin M., Yurong S., Yunkai L., Hongyuan Z. and Wenying M. 2020. Polycyclic aromatic hydro-carbons in benthos of the northern Bering Sea Shelf and Chukchi Sea Shelf. Journal of Environmental Sciences, 97: 194–199. doi: 10.101 6/j.jes.2020.04.021
Zakaria M.P., Takada H., Tsutsumi S., Ohno K., Yamada J., Kouno E. and Kumata H. 2002. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries and in Malaysia: A widespread input of petrogenic PAHs. Environmental Sciences and Technology, 36: 1907–1918. doi: 10.1021/es011278+
Zhang J., Zhang X., Hu T., Xu X., Zhao D., Wang X., Li L., Yuan X., Song C. and Zhao S. 2022. Polycyclic aromatic hydrocarbons (PAHs) and antibiotics in oil-contaminated aquaculture areas: Bioaccumulation, influencing factors, and human health risks. Journal of Hazardous Materials, 437: 129365. doi: 10.1016/j.jhazmat. 2022.129365