بررسی تطبیقی میزان رشد، بقا و پروتئین کل در Artemia franciscanaتغذیه شده با پودر جلبک اسپیرولینا و دونالیلا در شرایط آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار گروه بهداشت و کنترل کیفی مواد غذایی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

10.22124/japb.2024.25821.1517

چکیده

آرتمیا مهم‌ترین غذای زنده قابل کشت در آبزی‌پروری است. با توجه به کشت انبوه، امکان استفاده راحت و ارزش غذایی اسپیرولینا در آبزی­پروری، تاثیر جلبک‌های Spirulina platensis و Dunaliella salina بر میزان رشد، بقا و پروتئین کل Artemia franciscana مورد ارزیابی قرار گرفت. بدین منظور ابتدا آرتمیا در شرایط آزمایشگاهی کشت و با ترکیبی از مخمر و پودر جلبک اسپیرولینا در 5 تیمار مختلف (20، 40، 60، 80 و 100 درصد پودر جلبک اسپیرولینا و مخمر) در مقایسه با تیمار شاهد (100 درصد جلبک دونالیلا و مخمر) پرورش داده شد. نتایج نشان داد که رشد در تیمار­های 40، 60، 80 و 100 درصد پودر اسپیرولینا و بقا در تیمار 100 درصد پودر جلبک اسپیرولینا تفاوت معنی­داری نسبت به تغذیه با تیمار شاهد داشت (05/0P<). در بررسی اولین بلوغ در هر تیمار مشخص شد که تیمار 100 درصد پودر اسپیرولینا زودترین زمان بلوغ را داشت که این نتیجه کاملا با میزان پروتئین کل تیمارها مطابق بود. با توجه به نتایج، بهترین تیمار از لحاظ رشد، بقا، زمان اولین بلوغ و میزان پروتئین کل، تیمار 100 درصد پودر اسپیرولینا بود. از این رو، پرورش آرتمیا با اسپیرولینا توجیه علمی و اقتصادی دارد.

کلیدواژه‌ها

موضوعات


Ahmadzadenia Y., Nazeradl K., Hezave S.G., Hejazi M.A., Ghavidel S.Z., Hassanpour S. and Chaichisemsari M. 2011. Effect of replacing fishmeal with Spirulina on carcass composition of rainbow trout. Journal of Agricultural and Biological Science, 6(6): 66–71. doi: 10.5555/ 20113319515
AOAC. 2000. Official Methods of Analysis. Association of Official Analytical Chemists, USA. 1040P. doi: 10.1002/jps.2600650148
Belay A. 2002. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. Journal of the American Nutraceutical Association, 5: 27–48.‏
Clements K.D. and Raubenheimer D. 2006. Feeding and nutrition. P: 47–82. In: Evans D.H. (Ed.). The Physiology of Fishes. CRC Press, USA. doi: 10.1201/9781420058093
Conceicao E., Aragao C., Richard N., Engrola S., Gavaia P., Mira S. and Dias J. 2010. Novel methodologies in marine fish larval nutrition. Fish Physiology and Biochemistry, 36: 1–16. doi: 10.10 07/s10695-009-9373-z
Coutteau P., Brendonck L., Lavens P. and Sorgeloos P. 1992. The use of manipulated baker's yeast as an algal substitute for the laboratory culture of Anostraca. Journal of Hydrobiologia, 234: 25–32. doi: 10. 1007/BF00010776
Coutteau P., Lavens P. and Sorgeloos P. 1990. Baker's yeast as a potential substitute for live algae in aquaculture diets: Artemia as a case study. Journal of the World Aquaculture Society, 21(1): 1–9. doi: 10.1111/j.1749-7345.1990.tb0094 7.x
Dernekbasi S., Unal H. and Karayucel I. 2010. Effect of dietary supplementation of different of spirulina (Spirulina platensis) on growth and feed conversion in guppy (Poecilia reticulata Peters, 1860). Animal and Veterinary Advances, 9(9): 1395–1399. doi: 10.3923/javaa.2010. 1395.1399
Guroy B., Guroy D., Mantoglu S., Çelebi K., Şahin O.I., Kayali S. and Canan B. 2019. Dietary Spirulina (Arthrospira platensis, Gomont, 1892) improved the flesh quality and shelf life of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) fed fish meal or plant‐based diet. Aquaculture Research, 2019:1–9. doi: 10.1111/ ARE.14206
Habib M.A.B., Parvin M., Huntington T.C.  and Hasan M.R. 2008. Review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations, Italy. 33P.
Hamrang Omshi A., Bahri A.H., Khara H. and Mohammadizadeh F. 2019. Comparing effects of astaxanthin, turmeric and spirulina (Spirulina platensis) on growth, hematological and immunological parameters and coloration in the tiger oscar (Astronotus ocellatus). Aquatic Physiology and Biotechnology, 7(1): 1–21. doi: 10.22124/japb.2019.8500.1191
Henrikson R. 2010. Spirulina World Food: How This Micro Algae Can Transform Your Health and Our Planet. Ronore Enterprises Incorporated, Canada. 217P.
Hooti V. and Manaffar R. 2023. Spirulina; The Food for Future. Journal of Ornamental Aquatics, 10(2): 1–13.
Jung F., Kruger-Genge A., Waldeck P. and Kupper J.H. 2019. Spirulina platensis, a super food? Journal of Cellular Biotechnology, 5(1): 43–54. doi: 10.3233/JCB-189 012
Kjorsvik E., Galloway T.F., Estevez, A., Saele O. and Moren M. 2011. Effects of larval nutrition on development. P: 219–248. In: Holt G.J. (Ed.). Larval Fish Nutrition. Wiley, USA. 448P. doi: 10.1002/978 0470959862.ch7
Lavens P. and Sorgeloos P. 1996. Manual on the production and use of live food for aquaculture (No. 361). Food and Agriculture Organization (FAO), Italy. 295P.
Lupatini A.L., Colla L.M., Canan C. and Colla E. 2017. Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of Food and Agriculture, 97(3): 724–732. doi: 10.1002/jsfa.7987
Manaffar R., Abtahi B. and Agh N. 2005. Enrichment of Artemia urmiana nauplii using emulsion of fatty acids and an investigation of hufa metabolism in cold incubation. Iranian Journal of Natural Resources, 58(1): 125–134. doi: 10.22124/japb.2019.8500.11 91
Mostafaei F., Alaf Novirian H., Falahatkar B. and Shabanipour N. 2024. The effect of feeding with different levels of Spirulina platensis on growth indices and carcass composition of freshwater bivalve mussel (Anodonta cygnea). Aquatic Physiology and Biotechnology, 12(1): 41–65. doi: 10.22124/japb.2023.24701.1500
Naegel L.C.A. 1999. Controlled production of Artemia biomass using an inert commercial diet, compared with the microalgae Chaetoceros. Journal of Aquaculture Engineering, 21: 49–59. doi: 10.1016/S0144-8609(99)000 23-0
New M.B. 1998. Global aquaculture: Current trends and challenges for the 21st century. In Annans do Aquacultura, Brasil, 98(1): 2–6.
Oren A. 2014. The ecology of Dunaliella in high-salt environments. Journal of Biological Research-Thessaloniki, 21: 1–8. doi:10.1186/s40709-014-00 23-y
Ownagh E., Agh N. and Noori F. 2015. Comparison of the growth, survival and nutritional value of Artemia using various agricultural by-products and unicellular algae Dunaliella salina. Iranian Journal of Fisheries Science, 14(2): 358–368.
Paknejadi M., Malekahmadi F. and Soltani N. 2018. Effect of different amounts of nitrogen and pH on biomass production, lipid content and fatty acid composition in Spirulina major. Journal of Aquatic Ecology, 8(2): 14–30.
Pokniak J. 2007. Incorporacion de espirulina (Spirulina maxima) en dietas para alevines de truchas arco iris (Oncorhynchus mykiss). Avances en Ciencias Veterinarias, 22(1-2): 1–5. doi: 10.5354/acv.v22i 1-2.911
Richard N., Engrola S., Palma P.S., Simes D.C. and Conceicao L.E. 2015. Assessment of protein digestive capacity and metabolic utilisation during ontogeny of Senegalese sole larvae: A tracer study using in vivo produced radiolabelled polypeptide fractions. Aquaculture, 441: 35–44. doi: 10.1016/j.aquaculture.2015.02.0 03
Santos T.D., De Freitas B.C.B., Moreira J.B., Zanfonato K. and Costa J.A.V. 2016. Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innovative Food Science and Emerging Technologies, 37: 216–220. doi: 10.1016/j.ifset.2016.07.016
Sharma P. and Sharma N. 2017. Industrial and biotechnological applications of algae: A review. Journal of Advances in Plant Biology, 1(1): 1–25. doi: 10.14302/ issn.2638-4469.japb-17-1534
Sheikhi Nejad A., Lababpour A. and Moazami N. 2015. Increasing cyanobacteria Spirulina production with mixing and chemical composition of culture medium. Journal of Plant Research, 28(2): 344–353.
Soltanian S., Dhont J., Sorgeloos P. and Bossier P. 2008. Anti‐infectious potential of beta‐mercapto‐ethanol treated baker’s yeast in gnotobiotic Artemia challenge test. Journal of Applied Microbiology, 104(4): 1137–1146. doi: 10.1111/j.1365-2672.2007.0362 9.x
Sorgeloos P., Coutteau P., Dhert P., Merchie G. and Lavens P. 1998. Use of brine shrimp, Artemia spp., in larval crustacean nutrition: A review. Reviews in Fisheries Science, 6(1-2): 55–68. doi: 10.10 80/10641269891314195
Sudagar M., Khalese M., Mazandarani M., Hosseini S.A. and Zakariaee H. 2016. Effects of Spirulina algae on growth, survival and coloration demasoni fish (Pseudotropheus demasoni). Journal of Fisheries, 69(1): 21–27. doi: 10.22059/jfisheries.2016.57887
Talebi F., Esmaili F., Aboulghasem Abdi J. and Manafifar R. 2013. Effects of substitution of manipulated baker's yeast for Lansy PZ as feed on the growth and survival of Artemia urmiana and A. franciscana. Journal of Fisheries (Iranian Journal of Natural Resources), 66(3): 317–330. doi: 10.22059/JFISHERIES.2013.36007
Teimouri M., Amirkolaie A.K. and Yeganeh S. 2013. The effects of Spirulina platensis meal as a feed supplement on growth perform-ance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture, 396: 14–19. doi: 10.10 16/j.aquaculture.2013.02.009
Teresita D.N.J.M. and Leticia G.R. 2004. Biomass production and nutritional value of Artemia sp. (Anostraca: Artemiidae) in Campeche, Mexico. Journal of Revista de Biologia Tropical, 53: 447–454. doi: 10.15517/rbt.v53i3-4.1 4613
Triantaphyllidis G.V., Abatzopoulos T.J., Miasa E. and Sorgeloos P. 1996. International study on Artemia. LVI. Characterization of two Artemia populations from Namibia and Madagascar: Cytogenetics, biometry, hatching characteristics and fatty acid profiles. Hydrobiologia, 335: 97–106. doi: 10.1007/BF00015271
Triantaphyllidis G.V., Poulopoulou K., Abatzopoulos T.J., Pinto Perez C.A. and Sorgeloos P. 1995. International study on Artemia. XLIX. Salinity effects on survival, maturity, growth, biometrics, reproductive and lifespan characteristics of a bisexual and a parthenogenetic population of Artemia. Hydrobiologia, 302: 215–227. doi: 10.1007/BF00032111
Vijayaram S., Ringo E., Ghafarifarsani H., Hoseinifar S. H., Ahani S. and Chou C.C. 2024. Use of algae in aquaculture: A review. Fishes, 9(2): 1–21 (63). doi: 10.3390/fishes9020063
Volkmann H., Imianovsky U., Oliveira J.L. and SantAnna E.S. 2008. Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: Protein content and amino-acid profile. Brazilian Journal of Microbiology, 39(1): 98–101.‏ doi: 10.1590/S1517-8382200 80001000022
Zarrouk C. 1996. Contribution to the study of cyanobacteria, influence of various physical and chemical factors on growth and photosynthesis is Spirulina maxima. Ph.D. Thesis, University of Paris, France.