Investigating the cytotoxic properties of Chrysaora hysoscella jellyfish venom against human colon cancer cells

Document Type : Research Paper

Authors

1 Ph.D. Student in Marine Biology, Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2 Professor in Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

3 Assistant Professor in Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

4 Assistant Professor in Organic Chemistry, Razi Vaccine and Serum Research Institute, Agricultural Research and Extension Organization (AREEO), Karaj, Iran

5 Assistant Professor in Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research and Extension Organization (AREEO), Karaj, Iran

10.22124/japb.2024.26396.1523

Abstract

Jellyfish venom contains a variety of compounds including several potential therapeutic properties. The present study investigates the venom of Chrysaora hysoscella jellyfish and analyzes its cytotoxic properties. The fractions of                   C. hysoscella jellyfish venom were purified using HPLC method, and their molecular weight was determined by SDS-PAGE method. The cytotoxic properties of the fractions were evaluated using the MTT method against HCT116 and Caco-2 cancer cell lines as well as RAW 264.7 normal cells. Based on the obtained results, the raw venom of C. hysoscella had 10 fractions with a molecular weight of 15 to 170 kilodaltons, of which fraction 2 had a strong cytotoxic effect against the studied cancer cell lines. The value of IC50 against HCT116 and Caco-2 cells was 63.21 and 64.36 μg/mL, respectively, while against RAW 264.7 cells, it was 122.88 μg/mL. The obtained results revealed the specific cytotoxic property of fraction 2 against colon cancer cells, while its cytotoxic effect on normal cells was significantly less. These results introduce the fraction 2 as a potential anticancer agent for colon cancer.

Keywords

Main Subjects


Ayed Y., Bousabbeh M., Mabrouk H.B., Morjen M., Marrakchi N. and Bacha H. 2012. Impairment of the cell-to-matrix adhesion and cytotoxicity induced by the Mediterranean jellyfish Pelagia noctiluca venom and its fractions in cultured glioblastoma cells. Lipids in Health and Disease, 11: 1–9. doi: 10.1186/1476-511X-11-84
Ayed Y., Boussabbeh M., Zakhama W., Bouaziz C., Abid S. and Bacha H. 2011. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells. Lipids in Health and Disease, 10: 1–10. doi: 10.1186/1476-511X-10-232
Bhardwaj V., Gumber D., Abbot V., Dhiman S. and Sharma P. 2015. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. Research Advances, 5: 15233–15266. doi: 10.1039/C4RA 15710A
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. doi: 10.1006/abio.1976.9999
Brinkman D.L., Konstantakopoulos N., McInerney B.V., Mulvenna J., Seymour J.E., Isbister G.K. and Hodgson W.C. 2014. Chironex fleckeri (box jellyfish) venom proteins: Expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. Journal of Biological Chemistry, 289: 4798–4812. doi: 10.1074/jbc.M113.534149
Carli A., Mariottini G.L. and Pane L. 1994. Ecological and medical aspects of jellyfish poisoning. Marine Drugs, 8(4): 1122–1152. doi: 10.3390/md8041122
Choudhary I., Lee H., Pyo M.J., Heo Y., Chae J., Yum S.S., Kang C. and Kim E. 2018. Proteomic investigation to identify anticancer targets of Nemopilema nomurai jellyfish venom in human hepatocarcinoma HepG2 cells. Toxins, 10(5): 194–201. doi: 10.3390/toxins10050194
Condon R.H., Duarte C.M., Pitt K.A., Robinson K.L., Lucas C.H., Sutherland K.R., Mianzan H.W., Bogeberg M., Purcell J.E. and Decker M.B. 2013. Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences, 110: 1000–1005. doi: 10.1073/pnas.1210920110
Cuiping L., Pengcheng L., Jinhua F., Rongfeng L. and Huahua Y. 2012. Cytotoxicity of the venom from the nematocysts of jellyfish Cyanea nozakii Kishinouye. Toxicology and Industrial Health, 28: 186–192. doi: 10.1177/0748233 711410910
D’Ambra I. and Lauritano C. 2020. A review of toxins from Cnidaria. Marine Drugs, 18(10): 507–515. doi: 10.3390/md18100507
D’Ambra I. and Merquiol L. 2022. Jellyfish from fisheries by-catches as a sustainable source of high-value compounds with biotechnological applications. Marine Drugs, 20(4): 266–285. doi: 10.3390/md20040266
Daryanabard R. and Dawson M.N. 2008. Jellyfish blooms: Crambionella orsini (Scyphozoa: Rhizostomeae) in the Gulf of Oman, Iran, 2002–2003. Journal of the Marine Biological Association of the United Kingdom, 88: 477–483. doi: 10.1017/S0025315408000 945
Dekker E., Tanis P.J., Vleugels J.L., Kasi P.M. and Wallace M. 2019. Pure-AMC. Lancet, 394: 1467–1480. doi: 10.1016/S0140-6736(19) 32319-0
Fernandes A., Fernandes I., Cruz L., Mateus N., Cabral M. and De Freitas V. 2009. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L. Journal of Agricultural and Food Chemistry, 57: 11154–11160. doi: 10.1021/jf902093m
Frazao B., Vasconcelos V. and Antunes A. 2012. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: An overview. Marine Drugs, 10: 1812–1851. doi: 10.33 90/md10081812
Guren M.G. 2019. The global challenge of colorectal cancer. The Lancet Gastroenterology and Hepatology, 4: 894–895. doi: 10.10 16/S2468-1253(19)30329-2
Hessinger D.A. and Lenhoff H.M. 1976. Mechanism of hemolysis induced by nematocyst venom: Roles of phospholipase A and direct lytic factor. Archives of Biochemistry and Biophysics, 173: 603–613. doi: 10.1016/0003-9861 (76)90297-6
Jarms G., Morandini A.C., Schmidt-Rhaesa A., Giere O. and Straehler-Pohl I. 2019. World Atlas of Jellyfish: Scyphozoa Except Stauromedusae. Dolling und Galitz Verlag, Germany. 815P.
Jouiaei M., Yanagihara A.A., Madio B., Nevalainen T.J., Alewood P.F. and Fry B.G. 2015. Ancient venom systems: A review on Cnidaria toxins. Toxins, 7: 2251–2271. doi: 10.3390/toxins7062251
Kanwal R., Gupta K. and Gupta S. 2015. Cancer Epigenetics: An Introduction. Cancer Epigenetics: Risk Assessment, Diagnosis, Treatment, and Prognosis. Humana Press, Brazil. 325P.
Kumawat T., Saravanan R., Vinod K., Jaiswar A.K., Deshmukhe G., Shenoy L., Divu D., Joshi K.K. and Gopalakrishnan A. 2023. Jellyfish fisheries along the Gujarat coast, India: Status and challenges. Marine Policy, 150: 1–10.
Lee H., Bae S.K., Kim M., Pyo M.J., Kim M., Yang S., Won C.K., Yoon W.D., Han C.H. and Kang C. 2017. Anticancer effect of Nemopilema nomurai jellyfish venom on HepG2 cells and a tumor xenograft animal model. Evidence-Based Complementary and Alternative Medicine, 2017: 1–12 (2752716). doi: 10.1155/2017/275 2716
Luddecke T., Paas A., Harris R.J., Talmann L., Kirchhoff K.N., Billion A., Hardes K., Steinbrink A., Gerlach D. and Fry B.G. 2023. Venom biotechnology: Casting light on nature’s deadliest weapons using synthetic biology. Frontiers in Bioengineering and Biotechnology, 11: 1–17 (1166601). doi: 10.3389/fbioe.2023.1166601
Maduraiveeran H., Raja K. and Chinnasamy A. 2021. Antiproliferative and antioxidant properties of nematocysts crude venom from jellyfish Acromitus flagellatus against human cancer cell lines. Saudi Journal of Biological Sciences, 28: 1954–1961. doi: 10.1016/j.sjbs.2020.12.047
Mariottini G.L. 2014. Hemolytic venoms from marine cnidarian jellyfish– An overview. Journal of Venom Research, 5: 22–32.
Mariottini G.L. and Pane L. 2013. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins, 6: 108–151. doi: 10.3390/toxins6010 108
Merquiol L., Romano G., Ianora A. and D’Ambra I. 2019. Biotechnological applications of Scyphomedusae. Marine Drugs, 17(11): 1–26 (604). doi: 10.3390/ md17110604
Nevalainen T.J., Peuravuori H.J., Quinn R.J., Llewellyn L.E., Benzie J.A., Fenner P.J. and Winkel K.D. 2004. Phospholipase A2 in cnidaria. Comparative Biochemistry and Physiology (B), 139: 731–735. doi: 10.1016/j.cbpc. 2004.09.006
Nisa S.A., Govindaraju K., Vasantharaja R., Kannan M. and Raja K. 2023a. Jellyfish Acromitus flagellatus (Maas) nematocyst venom-mediated biogenic synthesis of gold nanoparticles and its anti-proliferative effects. Aquaculture International, 31(4): 1–10. doi: 10.1007/s10499-023-01081-z
Nisa S.A., Vasantharaja R. and Govindaraju K. 2023b. Antioxidant and anticancer activities of nematocyst venom protein of five scyphozoan Chrysaora jellyfish’s species from the coastal waters of Tamil Nadu, India. Biomass Conversion and Biorefinery, 1(1): 1–11. doi: 10.10 07/s13399-023-04206-9
Parodi A., Bassi A., Catalano M., Giacco E., Mariottini G. and Pane L. 2009. Cytotoxic effect on human keratinocytes of crude extracts from planktonic Cnidaria. Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale, 82: 11–23. doi: 10.4081/jbr.2009.4734
Pitt K.A. and Lucas C.H. 2014. Jellyfish Blooms. Springer, Netherlands. 554P.
Ranasinghe R., Wijesekara W., Perera P., Senanayake S., Pathmalal M. and Marapana R. 2022. Nutritional value and potential applications of jellyfish. Journal of Aquatic Food Product Technology, 31: 445–482. doi: 10.1080/10498850.2022.2060717
Schroy P.C., Brown-Shimer S., Kim K., Johnson K.A., Murnane M.J., Yang S., O'Brien M.J., Carney W.P. and Kupchik H.Z. 1995. Detection of p21ras mutations in colorectal adenomas and carcinomas by enzyme-linked immunosorbent assay. Cancer 76(2): 201–209. doi: 10.1002/1097-0142(19950715)76:2<201::aid-cncr28 20760207>3.0.co;2-t
 Siegel R.L., Miller K.D., Fuchs H.E. and Jemal A. 2021. Cancer statistics, 2021. Cancer Journal for Clinicians, 71: 7–33. doi: 10.1007/ s13399-023-04556-9
Siegel R.L., Miller K.D., Goding Sauer A., Fedewa S.A., Butterly L.F., Anderson J.C., Cercek A., Smith R.A. and Jemal A. 2020. Colorectal cancer statistics, 2020. Cancer Journal for Clinicians, 70: 145–164. doi: 10.3322/caac.21601
Uk L. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685. doi: 10.1038/22768 0a0
Vincent J.B. 1999. Mechanisms of chromium action: Low-molecular-weight chromium-binding substance. Journal of the American College of Nutrition, 18: 6–12. doi: 10.1080/07315724.1999. 10718821
Wild C., Weiderpass E. and Stewart B.W. 2020. World Cancer Report: Cancer Research for Cancer Prevention. International Agency for Research on Cancer, USA. 212P.
Young G.A. and Hagadorn J.W. 2010. The fossil record of cnidarian medusae. Palaeoworld, 19: 212–221. doi: 10.1016/j.palwor.2010.09. 014