Effects of diets containing Lactococcus lactis and Bacillus subtilis on growth indices and hepatic enzymes of tiger oscar (Astronotus ocellatus)

Document Type : Research Paper

Authors

1 Ph.D. Student in Fisheries, Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2 Assisstant Proffessor in Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran

3 Associate Professor in Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran

4 Assistant Professor in International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

5 Assistant Professor in Inland Waters Aquaculture Research Center, Iranian Fisheries Sciences Research, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran

Abstract

Tiger oscar (Astronotus ocellatus) is a favorite for aquarium fish enthusiasts due to its beauty and compatibility. The study was conducted to evaluate the effects of Lactococcus lactis and Bacillus subtilis on growth efficacy and hepatic enzymes of oscar by selecting 300 juveniles with a mean weight of 8.96±0.03g and length of 8.23±0.02cm. During 70 days fishes fed by diets contained L. lactis and B. subtilis in 9 single and combined treatments groups with the number 1010CFU/g bacteria in treatments which included 150, 300, and 450mg/kg of L. lactis (LL150, LL300, and LL450), 150, 300, and 450 mg/kg of B. subtilis (BS150, BS300, and BS450), 150, 300, and 450 mg/kg of an equal mixture of L. lactis and B. subtilis (MIX150, MIX300, and MIX450) and control group. Finally, their growth indices and hepatic enzymes were assessed. Results showed that applying both bacteria in the feeding of oscar fish has significantly improved the growth indices. Also, adding bacteria in the diet led to increased weight gain (WG), body weight index (BWI), average daily growth (ADG), Specific growth rate (SGR), final biomass and protein efficiency ratio (PER) compared to control (p < 0.05). All single and combined treatments compared to control had the most reduction of FCR which was statistically significant (p < 0.05). Also, the highest statistically significant difference between hepatic enzymes, alanine aminotransferase and aspartate aminotransferase was measured with control in treatment 3 (LL450) and alkaline phosphatase in treatment 9 (MIX450) (p < 0.05). The addition of these bacteria individually or in combination had a positive effect on growth indices and liver enzymes.

Keywords


امامی ف.، محب، ح. و حیدریپور ش. 1388. ماهی اسکار. انتشارات علمی آبزیان.40ص.
بیواره م. و جعفریان ح. 1397. تاثیر دو پربیوتیک تجاری ایمکس، سلماناکس مایع و مخلوط آن­ها با هم در جیره غذایی بچه ماهیان نورس کپور معمولی (Cyprinus carpio) بر عملکرد رشد، کارایی تغذیه و میزان مقاومت در برابر استرس‌های محیطی. نشریه توسعه آبزی پروری، 12(4): 16-1.
رضوانی گیلکلایی ع.، شعیبی عمرانی ب. و افرایی بندپی م. 1398. اثر پروبیوتیک (Lactobacillus plantarum) بر شاخص‌های تغذیه در تاس‌ماهی سیبری Acipenser baerii. نشریه توسعه آبزی‌پروری، 13(1):       88-79.
شناور ماسوله ع.، سلطانی م.، احمدی م.، پورکاظمی م. و طاهری ع. 1395. تاثیر تغذیه­ای لاکتوکوکوس لاکتیس JF831150 Lactococcus lactis بر وضعیت فلورباکتریایی روده تاس‌ماهی ایرانی Acipenser persicus و مواجه‌سازی با آئروموناس هیدروفیلا. مجله تحقیقات دامپزشکی، 71(3): 310-303.
فیروزبخش ف. و علیاصغری م. 1390. اطلس ماهیان آکواریومی آب شیرین. انتشارات پرتو واقعه. 158ص.
Abd El-Rahman A.M., Khattab Y.A.E. and Shalaby A.M.E. 2009. Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 27: 175–180.
Allameh S.K., Ringo E., Yusoff F.M., Daud H.M. and Ideris A. 2017. Dietary supplement of Enterococcus faecalis on digestive enzyme activities, short-chain fatty acid production, immune system response and disease resistance of Javanese carp (Puntius gonionotus, Bleeker 1850). Aquaculture Nutrition, 23: 331–338.
Bergmeyer H.U., Horder M. and Rej R. 1986. Internatonal federation of clinical chemistry (IFCC) scientific committee, anaqlytical section: Approved recommendation (1985) on IFCC method for the measurement of catalytic concentration of enzymes Part3. IFCC method for alanine aminotransferase (L-alanin:2-oxoglutarate aminotransferase EC 2.6.12). Journal of Clinical Chemistry and Clinical Biochemistry, 24: 481–95.
Biondo M.V. and R.P. Burki 2020. A systematic review of the ornamental fish trade with emphasis on coral reef fishes- An impossible task. Animals, 10(11): 1–19.
Carnevali O., De Vivo L., Sulpizio R., Gioacchini G., Olivotto I. and Silvi S. 2006. Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1-4): 430–458.
Carnevali O., Zamponi M.C., Sulpizo P., Rollo A., Nardi M., Orpianesi C., Silvi S., Caggiano M., Polzonetti A.M. and Cresci A. 2004. Administration of probiotic strain to improve sea bream wellness during development. Aquaculture International, 12: 377–386.
Dey V. 2016. The global trade in ornamental fish. Infofish International, 4: 53–55.
DGKC 1972. Recommendations of the German society for clinical chemistry. Standardization of methods for the determination of enzyme activities in biological fluids. Experimental basis for the optimized standard conditions. Zeitschrift fur Klinische Chemie und Klinische Biochemie, 10(6): 181–191.
Doeschate K. and Coyne V.E. 2008. Improved growth rate in farmed Haliotis midae through probiotic treatment. Aquaculture, 284: 174–179.
FAO. 2020. The State of world fisheries and aquaculture 2020. Sustainability in action. Food and Agriculture Organization, Rome. 224P.
Firouzbakhsh F., Noori F., Khalesi M.K. and Jani-Khalili K. 2011. Effects of a probiotic, protexin, on the growth performance and hematological parameters in the oscar (Astronotus ocellatus) fingerlings. Fish Physiology and Biochemistry, 37(4): 833–842.
Gatesoupe F.J. 1999. The use of probiotics in aquaculture: A review. Aquaculture, 180: 147–165.
Gatesoupe F.J. 2002. Probiotic and formaldehyde treatments of Artemia nauplii as food for larval pollack, Pollachius pollachius. Aquaculture, 212: 347–360.
Ghosh K., Sen S. and Ray A. 2003. Supplementation of an isolated fish gut bacterium, Bacillus circulans, in formulated diets for rohu, Labeo rohita fingerlings. Bamidgeh, 55: 13–21.
Ghosh S., Sinha A. and Sahu C. 2008. Dietary probiotic supplementation in growth and health of live-bearing ornamental fishes. Aquaculture Nutrition, 14: 289–299.
Gildberg A., Mikkelsen H., Sandaker E. and Ringo E. 1997. Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua). Hydrobiologia, 352: 279–285.
Gobi N., Vaseeharan B., Chen J.C., Rekha R., Vijayakumar S., Anjugam M. and Iswarya A. 2018. Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish and Shellfish Immunology, 74: 501–508.
Hamrang Omshi A., Bahri A., Khara H. and Mohammadizadeh F. 2017. The effects of lucantin red, yellow and astaxanthin on growth, hematological, immunological parameters and coloration in the tiger oscar (Astronotus ocellatus Agassiz, 1831). Iranian Journal of Fisheries Sciences, 18(4): 798–811.
Hamza A., Fdhila K., Zouiten D. and Masmoudi A.S. 2016. Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: Effects on growth performance and digestive enzyme activities. Fish Physiology and Biochemistry, 42: 495–507.
Hassaninia A., Vahabzadeh Roudsari H. and Sadeghpour A. 2016. Effect of pink leucantin on white oscar (Astronotus ocellatus) skin. Aquaculture Development, 10(1): 23–31.
Hevroy E.M., Waagbo R., Sandness K., Rund M. and Hermre G.I. 2005. Nutrition utilization in Atlantic salmon (Salmo salar) fed increased level of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition, 11: 301–313.
Jafarian H., Azari Takami G., Kamali A., Soltani M. and Habibirezaei M. 2007. The use of probiotic Bacillus bioencapsulated with Artemia urmiana nauplii for the growth and survival in Acipenser persicus larvae. Journal of Agriculture Sciences and Natural Resources, 14: 32–38.
Kesarcodi-Watson A., Kaspar H., Lategan M.J. and Gibson L. 2008. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274: 1–14.
Lee S., Katya K., Park Y., Won S., Seong M. and Bai S.C. 2017. Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish and Shellfish Immunology, 61: 201–210.
Liu H., Wang S., Cai Y., Guo X., Cao Z., Zhang Y., Liu S., Yuan W., Zhu W. and Zheng Y. 2017. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 60: 326–333.
Merrifield D.L., Bradley G., Harper G.M., Baker R.T.M., Munn C.B. and Davies S.J. 2011. Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Nutrition, 17: 73–79.
Safari O. and Mehraban M. 2013. Study on the effects of probiotic, Pediococcus acidilactici in the diet on some biological indices of oscar (Astronauts ocellatus). International Research Journal of Applied and Basic Sciences, 4(11): 3458–3464.
Seonghun W., Hamidoghli A., Wonsuk C., Youngjin P., Won J.J., In S.K. and Sungchul C.B. 2020. Effects of Bacillus subtilis WB60 and Lactococcus lactis on growth, immune responses, histology and gene expression in Nile tilapia, Oreochromis niloticus. Microorganisms, 8(1): 1–15 (67).
Verschuere L., Rombaut G., Sorgeloos P. and Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology, 64(4): 655–671.
Xia Y., Lu M., Chen G., Cao J., Gao F., Wang M., Liu Z., Zhang D., Zhu H. and Yi M. 2018. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 76: 368–379.
Yanbo W. and Zirong X. 2006. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Animal Feed Science Technology, 127: 283–292.