sox9 gene expression during stages of larval development and gonadal maturation in the beluga (Huso huso)

Document Type : Research Paper

Authors

1 Assistant Professor in Department of Genetics, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.

2 Professor in Iranian Fisheries Research Organization, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

3 Assistant Professor in Department of Physiology and Biochemistry, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

4 M.Sc. in Natural Resources Engineering, Department of Physiology and Biochemistry, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.

5 M.Sc. in Natural Resources Engineering, Department of Genetics, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.

6 Assistant Professor in Department of Physiology and Biochemistry, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.

Abstract

sox9 is a protein coding gene that plays a crucial role in the regulation of several cellular activities among vertebrates. The present study was developed for the identification of sox9 gene sequence and expression pattern in different stages of larval and gonadal development of male beluga as it is known a major species in acipenser culture. The results showed that the sox9 sequence in the beluga has high homology with the sox9 sequence in other vertebrates, which represents its fundamental role. Indeed, the study of sox9 gene expression during larval development (1, 3, 6, 15 and 50 days post hatching- dph) revealed that sox9 mRNA is expressed at different larval stages most importantly at 15 dph. However, in differentiated gonads (developmental stages 1-4), sox9 mRNA expressed only at stage 4. In conclusion, it seems that the sox9 expression was related with cartilage formation and organogenesis at early life stages and with testicular development at advanced stages of sexual maturation.

Keywords


رنجبرح.،یارمحمدیم.،سجادیم.وکاظمیر.1395. بررسی بیان ژن SOX9 در بافت‌های تاس‌ماهی ایرانی (Acipenser persicus). ژنتیک نوین، 11(1): 29-21.
Abdali H. and Eagderi S. 2015. Ontogeny of gill structure in Sterlet, Acipenser ruthenus (Linnaeus, 1758). Iranian Journal of Ichthyology, 2: 87–92.
Adolfi M., Carreira A., Jesus L., Bogerd J., Funes R., Schartl M., Sogayar M. and Borella M. 2015. Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae. Reprodive Biology Endocrinology, 13: 1–15.
Akbarzadeh A., Farahmand H., Mahjoubi F., Nematollahi M.A., Leskinen P., Rytkonen K. and Nikinmaa M. 2011. The transcription of l-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbate, during development of Persian sturgeon Acipenser persicus. Comparative Biochemistry and Physiology B, 158: 282–288.
Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215: 403–410.
Bahmani M. and Kazemi R. 1998. Histological study of gonad in young cultured sturgeon. Iranian Fisheries Journal, 7: 1–16.
Barney M.L. 2010. Molecular investigations on sex determination and differentiation pathways in the common carp, Cyprinus carpio. Ph.D. Thesis, University of Tasmania, Australia. 236P.
Berbejillo J., Martinez-Bengochea A., Bedo G. and Vizziano-Cantonnet D. 2011. Molecular characterization of testis differentiation in the Siberian sturgeon, Acipenser baerii. Indian Journal of Science and Technology, 4: 71–72.
Berbejillo J., Martinez-Bengochea A., Bedo G. and Vizziano-Cantonnet D. 2013. Expression of dmrt1 and sox9 during gonadal development in the Siberian sturgeon (Acipenser baerii). Fish Physiology and Biochemistry, 39: 91–94.
Berbejillo J., Martinez-Bengochea A., Bedo G., Brunet F., Volff J.N. and Vizziano-Cantonnet D. 2012. Expression and phylogeny of candidate genes for sex differentiation in a primitive fish species, the Siberian sturgeon, Acipenser baerii. Molecular Reproduction and Development, 79: 504–516.
Bowles J., Schepers G. and Koopman P. 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227: 239–255.
Bowles J. and Koopman P. 2001. New clues to the puzzle of mammalian sex determination.  Genome Biology, 2(9): 1–4 (1025).
Brennan J. and Capel B. 2004. One tissue, two fates: Molecular genetic events that underlie testis versus ovary development. Nature Reviews Genetics, 5: 509–521.
Chaboissier M.C., Kobayashi A., Vidal V.I., Lutzkendorf S., Van De Kant H.J., Wegner M., De Rooij D.G., Behringer R.R. and Schedl A. 2004. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development, 131: 1891–1901.
Chen J., Yuan H., Sun D., Liang B. and Zhang S. 2006. Sequence and expression of three members of the Sox gene in Amur sturgeon (Acipenser schrenckii). Journal of Applied Ichthyology, 22(1): 77–81.
Chiang E.F.L., Pai C.I., Wyatt M., Yan Y.L., Postlethwait J. and Chung B.C. 2001. Two sox9 genes on duplicated zebrafish chromosomes: Expression of similar transcription activators in distinct sites. Developmental Biology, 231: 149–163.
Cresko W.A., Yan Y.L., Baltrus D.A., Amores A., Singer A., Rodriguez-Mari A. and Postlethwait J.H. 2003. Genome duplication, sub-function partitioning, and lineage divergence: Sox9 in stickleback and zebrafish. Developmental Dynamics, 228:480–489.
Doroshov S.I., Moberg G.P. and Van Eenennaam J.P. 1997. Observations on the reproductive cycle of cultures white sturgeon, Acipenser transmontanus. Environmental Biology of Fishes, 48: 265–278.
FAO. 2015. An Overview of Recently Published Global. FAO Fisheries and Aquaculture Department, Rome. 3P.
Fernandino J.L., Guilgur L.G., Strobl-Mazzulla P.H. and Somoza G.M. 2003. Molecular cloning of SOX9, DMRT1 and SF1 cDNA partial sequences in the pejerrey fish Odontesthes bonariensis (Atheriniformes). Fish Physiology and Biochemistry, 28(1-4): 145–146.
Hagihara S., Yamashita R., Yamamoto S., Ishihara M., Abe T., Ijiri, S. and Adachi S. 2014. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in undifferentiated gonads of Russian sturgeon Acipenser gueldenstaedtii Brandt and Ratzeburg, 1833. Journal of Applied Ichthyology, 30: 1557–1564.
Hale M.C., Jackson J.R. and DeWoody J.A. 2010. Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens). Genetica, 138: 745–756.
Haugen T., Almeida F.F., Andersson E., Bogerd J., Male R., Skaar K.S., Schulz R.W., Sorhus E., Wijgerde T. and Taranger G.L. 2012. Sex differentiation in Atlantic cod (Gadus morhua L.): morphological and gene expression studies. Reproductive Biology and Endocrinology, 10(1): 47–60.
Healy C., Uwanogho D. and Sharpe P.T. 1999. Regulation and role of SOX9 in cartilage formation. Developmental Dynamics, 215: 69–78.
Hett A.K. and Ludwig A. 2005. SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome, 48: 181–186.
Hett A.K., Pitra C., Jenneckens I. and Ludwig A. 2005. Characterization of sox9 in European Atlantic sturgeon (Acipenser sturio). Journal of Heredity, 96(2): 150–154.
Jakubiczka S., Schroder C., Ullmann R., Volleth M., Ledig S., Gilberg E., Kroisel P. and Wieacker P. 2010. Translocation and deletion around SOX9 in a patient with acampomelic campomelic dysplasia and sex reversal. Sexual Development, 4(3): 143–149.
Johnsen H. 2012. Key genes and regulators associated with sexual differentiation and gonad development in Atlantic cod (Gadus morhua L.). Ph.D. Thesis, University of Tromso UIT, Norway. 60P.
Keyvanshokooh S. and Gharaei A. 2010. A review of sex determination and searches for sex-specific markers in sturgeon. Aquaculture Research, 41: 1–7.
Keyvanshokooh S., Pourkazemi M. and Kalbassi M.R. 2007. The RAPD technique failed to identify sex-specific sequences in beluga (Huso huso). Journal of Applied Ichthyology, 23: 1–2.
Kiefer J.C. 2007. Back to basics: Sox genes. Developmental Dynamics, 236: 2356–2366.
Kluver N. 2007. Molecular analysis of gonad development in medaka (Oryzias latipes) and Oryzias celebensis. Ph.D. Thesis, University of Wurzburg, Germany. 142P.
Koopman P. 2005. Sex determination: A tale of two Sox genes. Trends in Genetics, 21: 367–370.
Liu S., Sun Y., Zhang C., Luo K. and Liu Y. 2004. Production of gynogenetic progeny from allo-tetraploid hybrids red crucian carp × common carp. Aquaculture, 236: 193–200.
Livak K.J. and Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402–408.
Lubieniecki K.P., Botwright N.A., Taylor R.S., Evans B.S., Cook M.T. and Davidson W.S. 2015. Expression analysis of sex-determining pathway genes during development in male and female Atlantic salmon (Salmo salar). Physiological Genomics, 47(12): 581–587.
McCormick C., Bos D. and DeWoody J. 2008. Multiple molecular approaches yield no evidence for sex-determining genes in lake sturgeon (Acipenser fulvescens). Journal of Applied Ichthyology, 24: 643–645.
Mojazi Amiri B., Maebayashi M., Hara A., Adachi S. and Yamauchi K. 1996. Ovarian development and serum sex steroid and vitellogenin profiles in the female cultured sturgeon hybrid, the bester. Journal of Fish Biology, 48(6): 1164–1178.
Nakamoto M., Suzuki A., Matsuda M., Nagahama Y. and Shibata N. 2005. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka (Oryzias latipes). Biochemical and Biophysical Research Communications, 333: 729–736.
Strykowski J. 2011. Effects of temperature on gene expression and sex determination in the mangrove rivulus, Kryptolebias marmoratus. Ph.D. Thesis, University of Maryland, USA. 91P.
Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725–2729.
Vecsei P., Sucui R. and Peterson D. 2002. Threatened fishes of the world: Huso huso (Linnaeus, 1758) (Acipenseridae). Environmental Biology of Fishes, 65(3): 363–365.
Webb M.A., Feist G.W., Foster E.P., Schreck C.B. and Fitz-Patrick M.S. 2002. Potential classification of sex and stage of gonadal maturity of wild white sturgeon using blood plasma indicators. Transactions of the American Fisheries Society, 131: 132–142.
Wuertz S., Gaillard S., Barbisan F., Carle S., Congiu L., Forlani A., Aubert J., Kirschbaum F., Tosi E. and Zane L. 2006. Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker. Aquaculture, 258: 685–688.
Yan Y.L., Willoughby J., Liu D., Crump J.G., Wilson C., Miller C.T., Singer A., Kimmel C., Westerfield M. and Postlethwait J.H. 2005. A pair of Sox: Distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development, 132: 1069–1083.
Yarmohammadi M., Pourkazemi M., Ghasemi A., Hassanzadeh M. and Chakmehdouz F. 2011. AFLP reveals no sex-specific markers in Persian sturgeon (Acipenser persicus) or beluga sturgeon (Huso huso) from the southern Caspian Sea, Iran. Progress in Biological Sciences, 1: 55–114.
Yarmohammadi M., Pourkazemi M., Kazemi R., Hallajian A., Soltanloo H., Hassanzadeh Saber M. and Abbasalizadeh A. 2014. Persian sturgeon insulin-like growth factor I: Molecular cloning and expression during various nutritional conditions. Journal of Applied Genetics, 55: 239–247.
Yue H., Li C., Du H., Zhang S. and Wei Q. 2015. Sequencing and de novo assembly of the gonadal transcriptome of the endangered Chinese sturgeon (Acipenser sinensis). PLOS One, 10(6): 1–22 (0127332).