The effect of diet different iron nanoparticle levels on growth and hematological indices of common carp (Cyprinus carpio) fingerlings

Document Type : Research Paper


1 M.Sc. Student in Aquaculture, Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran

2 Associate Professor in Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran

3 Professor in Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran


The aim of this study was to assess the effects of different doses of zero-valent iron nanoparticles in the diet of common carp fingerling on growth performance and blood parameters. 150 fish with an average initial weight of 6.14±0.10g were fed one of the experimental diets for 8 weeks. The diets contained 0, 50, 100, 150 and 200 mg/Kg zero-valent iron nanoparticles. The results showed that fish were fed by the diet supplemented with 150 mg/Kg zero-valent iron nanoparticles displayed significant difference in final weight, weight gain, final length, specific growth rate, body weight increase, average daily growth, feed efficiency, protein efficiency ratio and lipid efficiency ratio (P<0.05). The highest amount of liver index was in zero treatment (P<0.05). The highest amount of red blood cells, hemoglobin level and hematocrit percent was observed in 150mg/Kg treatment and the lowest was in zero treatment (P<0.05). The lowest number of WBC and MCV index was in 150 mg/Kg treatment (P<0.05); But there was no significant difference between treatments in the values of MCV, MCH, monocytes and eosinophils (P>0.05). Based on the results, due to the increased surface to volume ratio, 150 mg/Kg zero-valent iron nanoparticles in the diet has more influence than larger scales, it is recommended in the diet of common carp fingerlings.


جاوید رحمدل ک.، علاف نویریان ح.، فلاحتکار ب. و باباخانی آ. 1395. اثر جایگزینی آرد ماهی با کنجاله آفتابگردان بر رشد، شاخص­های خونی و بیوشیمیایی پلاسما در بچه ماهیان انگشت‌قد کپور معمولی (Cyprinus carpio). مجله فیزیولوژی و بیوتکنولوژی آبزیان، 4(1): 67-50.
حاجی رحیمی ا.، فرخی ف. و توکمه‌چی ا. 1394. بررسی تاثیر نانوذرات اکسیدآهن و روی بر بافت کبد و عضله در ماهی قزل­آلای رنگین‌کمان(Oncorhynchus mykiss) . مجله زیست شناسی ایران، 28(3): 306-293.
رزم‌آرا پ.، پیکان حیرتی ف. و درافشان س. 1392. اثر نانوذرات نقره بر برخی شاخص­های خون­شناسی گربه­ماهی رنگین کمان (Pangasius hypophthalmus). مجله سلول و بافت، 5(3): 272-263.
رضایی ف.، جمیلی ش.، احتشامی ف.، ماشینچیان مرادی ع. و شهیدیان نامغی م. 1392. بررسی غلظت­های مختلف نانوذرات اکسید آهن بر تعداد گلبول­های قرمز ماهی کپور معمولی (Cyprinuscarpio). فصل­نامه
علمی محیط زیست جانوری، 6(3): 202-197.
فلاحتکار ب. 1394. تغذیه و جیره­نویسی آبزیان. انتشارات دانشگاه جامع علمی و کاربردی. 334ص.
قبادی ش.، رجبی اسلامی ه.، حسینی فرد س.م. و پلنگی ل. 1392. بررسی اثرات سطوح مختلف نانوذره آهن  (Fe)بر فاکتورهای رشد و تغذیه ماهی قزل­آلای رنگین­کمان (Oncorhynchus mykiss). فصل­نامه علوم تکثیر و آبزی­پروری، 1(1): 82-62.
قیاسی س. و فلاحتکار ب. 1394. تغییرات رشد، میزان مصرف غذا و کورتیزول پلاسما در بچه ماهی کپور معمولی (Cyprinus carpio) پس از تزریق کورتیزول. مجله علمی شیلات ایران، 24: 13-1.
محمدی ن. و توکمه‌چی ا. 1394. تاثیر استفاده توام نانوذرات آهن و پروبیوتیک Lactobacillus casei بر شاخص­های رشد و تجمع پروبیوتیک در روده ماهی قزل­آلای رنگین­کمان (Oncorhynchus mykiss). مجله تحقیقات دامپزشکی، 70(1): 53-47.
 Adedeji O.B., Adeyemo O.K. and Agbede S.A. 2009. Effects of diazinon on blood parameters in the African catfish (Clarias gariepinus). African Journal of Biotechnology, 8(16): 3940–3946.
Adel A. and Khara H. 2014. The effects of different dietary vitamin C and iron levels on the growth, hematological and immunological parameters of rainbow trout Oncorhynchus mykiss fingerlings. Iranian Journal of Fisheries Sciences, 15: 886–897.
Andersen F., Lorentzen M., Waagbo R. and Maage A. 1997. Bioavailability and interactions with other micronutrients of three dietary iron sources in Atlantic salmon, Salmo salar, smolts. Aquaculture Nutrition, 3: 239–346.
Anderson F., Maage A. and Julshman K. 1996. An estimation of dietary requirements of Atlantic salmon, Salmo salar L., parr. Aquaculture, 24: 41–47.
Aprodu I., Vasile A., Gurau G., Ionescu A. and Paltenea E. 2012. Evaluation of nutritional quality of the common carp (Cyprinus carpio) enriched in fatty acids. Food Technology, 36: 61–73.
Barros M.M., Pezzato L.E., Kleemann G.K., Hisano H. and Rosa G.J. 2002. Levels of vitamin C and iron for nile tilapia (Oreochromis niloticus). Revista Brasileira de Zootecnia, 31: 2149–2156.
Barton J.C. and Edwards C.Q. 2000.Hemochromatosis: Genetics, Pathophysiology, Diagnosis and Treatment. Cambridge University Press, New York. 616P.
Behera T., Swain P., Rangachrulu P.V. and Samanta M. 2014. Nano-Fe as feed additive improves the hematological and immune-logical parameters if fish, Labeo rohita H. Journal Applied Nanoscience, 4: 687–694.
Bhattacharya S., Preeti S.H. and Gupta U. 2015. Nanotechnology research, innovation and comercialisation in India: Contemporary status. ISTIP Policy Bulletin, 12: 1–20.
Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G. and Wan L. 2006. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2): 109–120.
Cho S. H., Lee S. M. and Lee J. H.   2005. Effect of dietary protein and lipid levels on growth and body composition of juvenile turbot (Scophthalmus maximus L.) reared under optimum salinity and temperature conditions. Aquaculture Nutrition, 11: 235–240.
Chu J.H., Chen S.M. and Huang C.H. 2007. Effect of dietary iron concentrations on growth, hematological parameters, and lipid peroxidation of soft-shelled turtles, Pelodiscus sinensis. Aquaculture, 269: 532–537.
Coates M.L. 1975. Hemoglobin function in the vertebrates: An evolutionary model. Journal of Molecular Evolution, 6: 285–307.
Das A., Prakash C., Babu S., Sharma A., Chanu T.I., Paul L. and Verma A.K. 2014. Dietary iron requirement of goldfish (Carassius auratus) Fry. Journal of Aquaculture Research, 66: 1–8.
Deng K. 2000. Artificial reproduction and early life stages of the green sturgeon (Acipenser medirostris). M.Sc. Theses, University of California, California. 63P.
Desjardins L.M. 1985. The effect of iron supplementation on diet rancidity and on the growth and physiological response of rainbow trout. M.Sc. Thesis, University of Guelph, Ontario, Canada. 174P.
Engle T.E., Spears J.W. and Armstrong T.A. 2000. Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. Journal of Animal Science, 78: 1053–1059.
FAO. 2003.Food and Agriculture Organization of the United Nations.
FAO. 2014. Fishery and Aquaculture Statistics Yearbook. FAO Publications, Italy. 103P.
Frei B. and Lawson S. 2008. Vitamin C and cancer revisited. Proceedings of the National Academy of Sciences, 105(32): 11037–11038.
Gatlin M. and Wilson R.P. 1986. Characterization of iron deficiency and the dietary iron requirement of fingerling channel catfish. Aquaculture, 52: 191–198.
Geiger C. 2009. Environmental Applications of Nanoscale and Microscale Reactive Metal Particles. American Chemical Society, Washington, DC. 320P.
Granstrom D.E. 2003. Agricultural (non biomedical) animal research outside the laboratory: A review of guidelines for institutional animal care and use committees. Institute for Laboratory Animal Research, 44: 206–210.
Handy R.D., Cornelis G., Fernandes T., Tsyusko O., Decho A., Sabo-Attwood T., Metcalfe C., Steevens J.A., Klaine S.J., Koelmans A.A. and Horne N. 2012. Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench. Environmental Toxicology and Chemistry, 31: 15–31.
Hardison R. 1998. Hemoglobins from bacteria to man: Evolution of different patterns of gene expression. The Journal of Experimental Biology, 201: 1099–1117.
Hilton J.W. 1989. The interactions of vitamins, minerals and diet composition in the diet of fish. Aquaculture, 79: 223–244.
Hirao S., Yamada J. and Kikuchi R. 1955. Relation between chemical constituents of rainbow trout eggs and the hatching rate. Nippon Suisan Gakkaishi, 21: 240–243.
Houston A. 1990. Blood and circulation. P: 273–322. In: Shreck C.B. and Moyle P.B. (Eds.). Methods for Fish Biology. American Fisheries Society, Bethesda, Maryland, USA.
Huber D.L. 2005. Synthesis, properties, and applications of iron nanoparticles. Small, 1(5): 482–501.
Hung S.S.O., Lutes B.P. and Conte F.S. 1987. Carcass proximate composition of juvenile white surgeon (Acipenser transmontanus). Journal of Physiology and Biochemistry, 88: 269–272.
Jahanshahi M. and Myrnya S. 2011. Nanomaterials toxicity, health and environmental concerns. Noshirvani Babol Industrial University Press. 436P.
Jia J., Wijkstrom U., Subasinghe R. and Barg U. 2001. Aquaculture development beyond 2000: Global prospects keynote address II. P: 9–12. In: Subasinghe R.P., Bueno P.B., Phillips M.J., Hough C., Mcgladdery S.E. and Arthur J.R. (Eds.). Aquaculture in the Third Millennium. NACA, Bangkok and FAO, Rome, Italy.
Kalantarian S.H., Rafiee G.H., Farhangi M. and Mojazi B.A. 2013. Effect of different levels of dietary vitamin C and potassium on growth indices biochemical composition and some whole body minerals in rainbow trout (Oncorhynchus mykiss) fingerlings. Journal of Aquaculture Research and Development, 4: 1–8.
Karthikeyeni S., Siva Vijayakumar T., Vasanth S., Ganesh A., Manimegalai P. and Subramanian P. 2013. Biosynthesis of Iron oxide nanoparticles and its haematological effects on fresh water fish (Oreochromis mossambicus). Journal of Academia and Industrial Research, 1(10): 645–649.
Kawano T., Pinontoan R., Hosoya H. and Muto S. 2002. Monoamine-dependent production of reactive oxygen species catalyzed by pseudoperoxidasea ctivity of human hemoglobin. Journal of Bioscience, Biotechnology and Biochemistry, 66: 1224–1232.  
Kawatsu H. 1972. Studies on the anaemia of fish: V. Dietary iron deficient anaemia in brook trout SalÍelinus fontinalis. Bulletin of Freshwater Fish Research Laboratory, 22: 59–66.
Khoshkalam E. and Rahnemaei R. 2014. Mechanism of nitrate reduction by iron nanoparticles in the presence of MnO2. Iran Nano Safety Congress, Tehran, Iran.
Liang J.J., Liu Y.J., Yang Z.N., Tian L.X., Yang H.J. and Liang G.Y. 2012. Dietary calcium requirement and effects on growth and tissue calcium of juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition, 18: 544–550.
Lim C., Sealey W.M. and Klesius P.H. 1996. Iron methionine and iron sulfate as sources of dietary iron for channel catfish Ictalurus punctatus. Journal of the World Aquaculture Society, 27(3): 290–296.
Mendil D., Uluozlu O.D., Hasdemir E., Tuzen M., Sari H. and Suicmez M. 2005. Determination of trace metal levels in seven fish species in lakes in Tukat, Turkey. Food Chemistry, 90: 175–179.
Mohseni M., Pourkazemi M. and Bai S.C. 2014. Effects of dietary inorganic copper on growth performance and immune response of juvenile beluga, Huso huso. Aquaculture Nutrition, 20: 547–556.
Nose Y. and Arai S. 1979. Recent advances in studies on mineral nutrition of fish in Japan. P: 584–590. In: Pillary T.V.R. and Dill W.A. (Eds.). Advances in Aquaculture. Fishing News (Books) Ltd, Farnham, England.
Pan L., Xie S., Zhu X., Lei W., Han D. and Yang Y. 2009. The effect of different dietary iron levels on growth and hepatic iron concentration in juvenile gibel carp (Carassius auratus gibelio). Journal of Applied Ichthyology, 25(4): 428–431.
Pardoe H., Chua-Anusorn W., St. Pierre T.G. and Dobson J. 2001. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. Journal of Magnetism and Magnetic Materials, 225(1): 41–46.
Pickering A.D. 1981. The concept of biological stress. P: 1–10. In: Pickering A.D. (Ed.). Stress and Fish. Academic Press, New York.
Prijic S., Scancar J., Romih R., Cemazar M., Bregar V.B. and Znidarsic A. 2010. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. The Journal of Membrane Biology, 236(1): 167–179.
Prochorov A.M., Pavlov G.V., Okpattah G.A.C. and Kaetanovich A.V. 2002. The effect of nano-disperse form of iron on the biological parameters of fish. 10th Foresight Conference on Molecular Nanotechnology. Maryland, USA.  
Rather M.A., Sharma R. and Aklakur M. 2011. Nanotechnology: A novel tool for aquaculture and fisheries development- A prospective mini-review. Aquaculture Research, 23: 12–25.
Rehulka J. 2000. Influence of astaxanthin on growth rate, condition, and some blood indices of rainbow trout (Oncorhynchus mykiss). Aquaculture, 190(1): 27–47.
Rigos G., Samartzis A., Henry M., Fountoulaki E., Cotou E., Sweetman J., Davies S. and Nengas I. 2010. Effects of additive iron on growth, tissue distribution, haematology and immunology of gilthead sea bream, Sparus aurata. Aquaculture International, 16: 1093–1104.
Roeder M. and Roeder R.H. 1966. Effect of iron on the growth rate of fishes. Journal of Nutrition, 90(66): 86–90.
Sakamoto S. and Yone Y. 1976. Requirement of red sea bream for dietary iron. Fishery Research Laboratory, Kyushu University, 3: 53–58.
Sakamoto S. and Yone Y. 1978. Iron deficiency symptoms of carp. Bulletin of the Japanese Society for the Science of Fish, 44: 1157–1160.
Salehi H. 2003. Market perspective on cultured carp products in Iran, Asia Pacific Conference on Aquaculture, Bangkok, Thailand. 45P.
Sanchez C. J. 1970. Life history and ecology of carp, Cyprinus carpio Linnaeus, in Elephant Butte Lake, New Mexico. M.Sc. Thesis, New Mexico State University, Mexico. 65P.
Saravanan M., Karthika S., Malarvizhi A. and Ramesh M. 2011. Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: Hematological, biochemical, ionoregulatory and enzymological responses. Journal of Hazard Mater, 195: 188–194.
Saravanan M., Suganya  R., Ramesh M., Poopal R. K., Gopalan N. and Ponpandian N. 2015. Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita. Journal Nanoparticel Research, 17(274): 1–12.
Shaw B.J. and Handy R.D. 2011. Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environment International, 37(6): 1083–1097.
Sreeja V., Jayaprabha K.N. and Joy P.A. 2015. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Applied Nanoscience, 5(1): 435–441.
Srinivasan V., Saravana Bhavan P., Rajkumar G., Satgurunathan T. and Muralisankar T. 2016. Effects of dietary iron oxide nanoparticles on the growth performance, biochemical constituents and physiological stress responses of the giant freshwater prawn Macrobrachium rosenbergii post-larvae. International Journal of Fisheries and Aquatic Studies, 4(2): 170–182.
Srivastava S. and Choudhary S.K. 2010. Effect of artificial photoperiod on the blood cell indices of the catfish, Clarias batrachus. Journal of  Stress Physiology and Biochemistry, 6(1): 22–32.
Stancheva M., Makedonski and Petrova E. 2013. Determination of heavy metals (Pb, Cd, as and Hg) in black sea grey mullet (Mugil cephalus). Bulgarian Journal of Agricultural Science, 19: 30–34.
Tokur B., Ozkutuk S., Atici E., Ozyurt G. and Ozyurt C.E. 2006. Chemical and sensory quality changes of fish fingers, made from mirror carp (Cyprinus carpio), during frozen storage (-18°C), Journal of Food Chemistry, 99: 335–341.
Tukmechi A., Rahmati H.R., Manaffar R. and Sheikhzadeh N. 2011. Dietary administration of betamercapto-ethanol treated Saccharomyces cerevisiae enhanced the growth, innate immune response and disease resistance of the rainbow trout, Oncorhynchus mykiss. Fish and Shellfish Immunology, 30(3): 923–928.
Turchini G.M., Menasti T., Frqyland L., Orban E., Caprino F., Moretti V.M. and Valfrre F. 2003. Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). Aquaculture, 225(1): 251–267.
Ye Ch., Liu Y. J., Mai K. and Huang J. W. 2007. Effect of dietary iron supplement on growth, haematology and microelements of juvenile grouper, Epinephelus coioides. Aquaculture Nutrition, 13: 471–477.