Comparison of otolith microchemistry of reproductive and non-reproductive female kutum (Rutilus frisii kutum)

Document Type : Research Paper

Authors

1 Professor in Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran/Professor in Department of Marine Science, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran

2 M.Sc. in Marine Biology, Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran

3 Ph.D. Student in Marine Biology, Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran

Abstract

To study the spawning migration of five-year-old reproductive and non-reproductive female kutum, Rutilus frisii kutum, the trace elements of Sr, Ba, Ca and the ratios of Sr:Ca, Ba:Ca and Sr:Ba were examined in their otoliths using ICP-MS. Water and fish samples were collected from the southern part of the Caspian Sea in reproductive season (February and March) of kutum. The concentration of Sr in Caspian Sea was twice than river while there was insignificant difference between two habitats in terms of Ba levels. Statistical comparison between reproductive and non-reproductive female kutum revealed small difference in the concentration of otolith Sr, but showed significant difference in Ba:Ca ratio. Differences in Ba:Ca ratio could be the result of fish migration towards the coastal zones over reproductive season and feeding of non-reproductive individuals in estuarine areas. Results indicated that microchemical analyses of otolith can be used as a valuable tool for differentiate reproductive and non-reproductive individuals. By means of elemental content relative to calcium, two types of fish could be differentiated for better understanding the movement pattern of fish broodstock, which could be completed with data from the other methods like tagging.

Keywords


آذری تاکامی ق.، رضوی صیاد ب. و حسینپور س.ن. 1369. بررسی تکثیر مصنوعی و پرورش ماهی سفید Rutilus frisii kutum در ایران.‎ مجله تحقیقات دامپزشکی (دانشگاه تهران)، 45(1): 65-52.
جمالپور م. و خدادی م. 1391. بررسی تعیین سن ماهی بیاه (Liza macrolepis) از روی ساختار فلس در خور موسی. زیست‌شناسی کاربردی، 25(1): 32-21.
خانیپور ع.ا. و ولیپور ع.ر. 1388. ماهی سفید جواهر دریای خزر. سازمان تحقیقات شیلات ایران. 84ص.
رضوی صیاد ب.ع. 1374. ماهی سفید. انتشارات مؤسسه تحقیقات شیلات ایران. 164ص.
رضوی صیاد ب.ع. 1378. مقدمه‌ای بر اکولوژی دریای خزر. انتشارات موسسه تحقیقات شیلات ایران.90ص.
شریعتیا. 1372. ماهیان دریای خزر. شرکت سهامی شیلات ایران. 171ص.
عبدلی ا. و نادری م. 1387. تنوع زیستی ماهیان حوضه جنوبی دریای خزر. انتشارات علمی آبزیان. 242ص.
Abdoli A. 1999. The inland water fishes of Iran. Natural and Wild Life Museum of Iran, Tehran, Iran. P: 198–200.
Arai T., Hirata T. and Takagi Y. 2007. Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta. Marine Environmental Research, 63: 55–66.
Berg L.S. 1964. Freshwater Fishes of USSR and Adjacent Countries, Vol. II. Israeli Program for Scientific Translation, Jerusalem. 496P.
Brazner J.C., Campana S.E. and Tanner D.K. 2004. Habitat fingerprints for Lake Superior coastal wetlands derived from elemental analysis of yellow perch otoliths. Transactions of the American Fisheries Society, 133: 692–704.
Brown-Peterson N.J., Wyanski D.M., Saborido-Rey F., Macewicz B.J., and Lowerre-Barbieri S.K. 2011. A standardized terminology for describing reproductive development in fishes. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science, 3: 52–70.
Buckel J.A., Sharack B.L. and Zdanowicz V.S. 2004. Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. Journal of Fish Biology, 64: 1469–1484.
Bull J.J. and Shine R. 1979. Iteroparous animals that skip opportunities for reproduction. American Naturalist, 114(2): 296–303.
Campana S.E. 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Marine Ecology Progress Series, 188: 263–297.
Campana S.E., Chouinard G.A., Hanson J.M., Frechet A. and Brattey J. 2000. Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research, 46: 343–357.
Chapman B.B., Eriksen A., Baktoft H., Brodersen J., Nilsson P.A., Hulthen K., Bronmark C., Hansson L.A., Gronkjær P. and Skov C. 2013. A foraging cost of migration for a partially migratory cyprinid fish. PLoS One, 8(5): 1–6 (e61223).
Conrath C.L. 2017. Maturity, spawning omission, and reproductive complexity of deepwater rockfish. Transactions of the American Fisheries Society, 146(3): 495–507.
Corey M. 2014. Otolith microchemistry as a tool to discriminate between river-spawning populations of walleye (Sander vitreus) in Lake Erie. Ph.D. Thesis,Ohio State University, USA.
Coutant C.C. 1988. Microchemical analysis of fish hard parts for reconstructing habitat use: Practice and promise American Fisheries Society Symposium, 7: 575–580.
Dorval E., Jones C.M., Hannigan R. and Montfrans J.V. 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Canadian Journal of Fisheries and Aquatic Sciences, 64: 411–424.
Doubleday Z.A., Izzo C., Woodcock S.H. and Gillanders B.M. 2013. Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquatic Biology, 18: 271–280.
Elsdon T.S. and Gillanders B.M. 2005. Strontium incorporation into calcified structures: Separating the effects of ambient water concentration and exposure time. Marine Ecology Progress Series, 285: 233–243.
Elsdon T.S., Wells B.K., Campana S.E., Gillanders B.M., Jones C.M., Limburg K.E., Secor D.H., Thorrold S.R. and Walther B.D. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: An Annual Review, 46: 297–330.
Folkvord A., Jorgensen C., Korsbrekke K., Nash R.D., Nilsen T. and Skjæraasen J.E. 2014. Trade-offs between growth and reproduction in wild Atlantic cod. Canadian Journal of Fisheries and Aquatic Sciences, 71: 1106–1112.
Fowler A.J., Campana S.E., Thorrold S.R. and Jones C.M. 1995. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences, 52(7):1431–1441.
Glenn H.D., Cowan Jr. J.H. and Powers J.E. 2017. A comparison of red snapper reproductive potential in the northwestern Gulf of Mexico: Natural versus artificial habitats. Marine and Coastal Fisheries, 9(1): 139–148.
Herwig N., Stephan K., Panne U., Pritzkow W. and Vogl J. 2011. Multi-element screening in milk and feed by SF-ICP-MS. Food Chemistry, 124(3): 1223–1230.
Kashefi P., Bani A. and Ebrahimi E. 2012. Morphometric and meristic variations between suppressed and non-suppressed kutum, Rutilus frisii kutum (Kamenskiy, 1901) in the southwest Caspian Sea. Italian Journal of Zoology, 79: 337–343 
Limburg K.E. 1995. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Marine Ecology Progress Series 119:25–35.
Limburg K.E. 1998. Anomalous migration of anadromous herrings revealed with natural chemical tracers. Canadian Journal of Fisheries andAquatic Sciences, 55: 431–437.
Loher T. and Seitz A.C. 2008. Characterization of active spawning season and depth for eastern Pacific halibut (Hippoglossus stenolepis), and evidence of probable skipped spawning. Journal of Northwest Atlantic Fishery Science, 41: 23–36.
Lo-Yat A., Meekan M., Munksgaard N., Parry D., Planes S., Wolter M. and Carleton J. 2005. Small-scale spatial variation in the elemental composition of otoliths of Stegastes nigricans (Pomacentridae) in French Polynesia. Coral Reefs, 24(4): 646–653.
Martin G.B. and Thorrold S.R. 2005. Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series, 293: 223–232.
McCulloch M., Fallon S., Wyndham T., Hendy E., Lough J. and Barnes D. 2003. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 421(6924): 727–730.
Milton D.A. and Chenery S.R. 2005. Movement patterns of barramundi Lates calcarifer, inferred from 87Sr/86Sr and Sr/Ca ratios in otoliths, indicate non-participation in spawning. Marine Ecology Progress Series, 301: 279–291.
Mugiya Y., Watabe N., Yamada J., Dean J.M., Dunkelberger D.G. and Shimizu M. 1981. Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comparative Biochemistry and Physiology A, 68: 659–662. 
Panfili J., Pontual H., De Troadec H. and Wright P.J. 2002. Manual of Fish Sclerochronology. Brest, France. 464P.
Persson P., Sundell K. and Bjornsson B.T. 1994. Estradiol-17β-induced calcium uptake and resorption in juvenile rainbow trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry, 13: 379–386.
Reebs S. 1992. Sleep, inactivity and circadian rhythms in fish. P: 127–135. In: Ali M.A. (Ed.). Rhythms in Fishes. Springer, USA.
Rideout R.M. and Rose G.A. 2006. Suppression of reproduction in Atlantic cod Gadus morhua. Marine Ecology Progress Series, 320: 267–277.
Rideout R.M. and Tomkiewicz J. 2011. Skipped spawning in fishes: More common than you might think. Marine and Coastal Fisheries, 3: 176–189.
Rideout R.M., Rose G.A. and Burton M.P.M. 2005. Skipped spawning in female iteroparous fishes. Fish and Fisheries, 6: 50–72.
Ruttenberg B.I., Hamilton S.L., Hickford M.J., Paradis G.L., Sheehy M.S., Standish J.D., Ben-Tzvi O. and Warner R.R. 2005. Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Marine Ecology Progress Series, 297: 273–281.
Secor D.H. and Rooker J.R. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research, 46: 359–371.
Secor D.H., Henderson-Arzapalo A. and Piccoli P.M. 1995. Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology, 192: 15–33.
Seitz A.C., Evans M.D., Courtney M.B. and Kanwit J.K. 2016. Continental shelf residency by adult Atlantic halibut electronic tagged in the Gulf of Maine. Journal of Northwest Atlantic Fisheries Society, 48: 33–40.
Shrimpton J.M., Warren K.D., Todd N.L., McRae C.J., Glova G.J., Telmer K.H. and Clarke A.D. 2014. Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you'll go. Journal of Fish Biology, 85: 987–1004.
Skjaeraasen J.E., Kennedy J., Thorsen A., Fonn M., Strand B.N., Mayer I. and Kjesbu O.S. 2009. Mechanisms regulating oocyte recruitment and skipped spawning in Northeast Arctic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 66: 1582–1596.
Tzeng W.N., Severin K.P. and Wickstrom H. 1997. Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Oceanographic Literature Review, 149: 73–81.
Verslycke T., Vandenbergh G.F., Versonnen B., Arijs K. and Janssen C.R. 2002. Induction of vitellogenesis in 17α-ethinylestradiol-exposed rainbow trout (Oncorhynchus mykiss): A method comparison. Comparative Biochemistry and Physiology C, 132: 483–492.
Wilcove D.S. and Wikelski M. 2008. Going, going, gone: Is animal migration disappearing? PLoS Biology, 6(7): 1361–1363 (e188).