Effect of protein levels and different carbon sources on mucus immune parameters, hepatic enzymes activity and Lactobacillus loading in biofloc system of common carp (Cyprinus carpio) juvenile

Document Type : Research Paper

Authors

1 Ph.D. Student in Fisheries, Department of Fisheries, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

2 Associate Professor in Department of Fisheries, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

3 Associate Professor in Department of Biology, Faculty of Science, Urmia University, Iran

4 Assistant Professor in Department of Fisheries, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

5 Assistant Professor in Department of Microbiology, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

Abstract

An 8-week experiment was conducted to evaluate the effect of different carbon sources and protein levels on mucus immune parameters, hepatic enzymes and intestine lactic acid bacteria loading in biofloc system of common carp (Cyprinus carpio) juvenile in intensive culture. Fish fed the feed containing 20 or 30% crude protein including two groups in clear water conditions with no biofloc, two biofloc groups given a molasses as additional carbon source (M), two biofloc groups given rice bran (RB) and two biofloc groups given mixture of molasses + rice bran at equal weight ratio (M+RB). At the end of trial, mucus immune parameters (lysozyme activity and total immunoglobulin), hepatic enzymes (LDH, AST, ALT, ALP) and intestine lactic acid bacteria loading were investigated. The results showed that significant improvements in immune parameters were observed in fish fed 30% dietary protein and reared in biofloc condition (p < 0.05). Hepatic enzymes and lactic acid bacteria loading significantly improved in fish fed 30% dietary protein and reared in M and M+RB biofloc than control group (p < 0.05). In conclusion, using mixture of M+RB as carbon source associated higher protein can be improved immune response, metabolic enzyme and lactobacillus loading in intensive farming of common carp.

Keywords


اکرمی ر. و شاملوفر م. 1396. اﺛﺮ ﺗﻐﺬﻳﻪای ﭘﻮدر ﭘﻴﺎز ﺑﺮ ﺑﺮﺧﻲ ﻓﺮاﺳﻨﺠﻪﻫﺎی اﻳﻤﻨﻲ، بیوشیمی و برخی آﻧﺰﻳﻢﻫﺎی ﺳﺮم ﺧﻮن ﻣﺎﻫﻲ ﻛﭙﻮر ﻣﻌﻤﻮﻟﻲ (Cyprinus carpio). نشریه توسعه آبزی‌پروری، 11(4): 12-1.
 چیتساز ح. و اکرمی ر. 1395. تاثیر سطوح مختلف پوست سیر بر فعالیت برخی آنزیم­های کبدی در کپور معمولی (Cyprinus carpio). نخستین همایش ملی گیاهان دارویی معطر وادویه‌ای. دانشگاه گنبدکاووس، گنبدکاووس. ص: 26-23.
 حقپرست رادمرد م.م.، علیشاهی م.، قربانپور م. و شهریاری ع. 1397. مقایسه کیفیت پرورش آب در سیستم پرورش متراکم ماهی کپور معمولی (Cyprinus carpio) به روش بیوفلاک با سطوح مختلف ملاس نیشکر. مجله دامپزشکی ایران، 14(3): 40-28.
خانجانی م.ح.، سجادی م.م.، علیزاده م. و سورینژاد ا.  1395. تولید و ارزیابی بیوفلوک به منظور بکارگیری در سیستم پرورشی بدون تعویض آب. نشریه توسعه آبزی‌پروری، 10(1): 42-33.
 صحرایی ح.، هدایتی س.ع.ا.، مریوانی ل. و رضایی خ. 1396. بررسی تغییرات بافت عضله و آنزیم‌های کبدی ماهی کپور معمولی (Cyprinus carpio) تغذیه شده با نانوذرات اکسید آهن و روی. پژوهش ماهی‌شناسی کاربردی، 5(2): 96-79.
 عباسزاده ا.، یاوری و.، حسینی س.ج.، و نفیسی بهابادی م. 1396. تاثیر منابع مختلف کربنی (ملاس و شیره ضایعات خرما) بر کیفیت آب، عملکرد رشد و ترکیبات بدن میگوی سفید غربی (Litopenaeus vannamei) در سیستم بایوفلاک.  مجله  بوم‌شناسی  آبزیان،  6(4):  38-21.
 نویدپور آقجه مشهد ف.، میردار هریجانی ج.، قرایی ا. و راهداری ع. 1394. تاثیر سطوح مختلف پودر تفاله گوجه فرنگی بر فاکتورهای بیوشیمیایی خون و شاخص‌های رشد در ماهی کپور معمولی (Cyprinus carpio). پژوهش ماهی‌شناسی کاربردی، 3(4): 114-101.
Anand P.S.S., Kohli M.P.S., Kumar S., Sundaray J.K., Dam Roy S., Venkateshwarlu G., Sinha A. and  Pailan G.H. 2014. Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418: 108–115.
Avnimelech Y. 1999. Carbon/ nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227–235.
Avnimelech Y. 2009. Biofloc Technology, A Practical Guide Book. The World Aquaculture Society, USA. 182P.
Azim M.E. and Little D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35.
Bakhshi F., Najdegerami E.H., Manaar R., Tukmechi A. and Rahmani Farahe K. 2018. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio) fingerlings. Aquaculture, 484: 259–267.
Burford M., Thompsona P.J., McIntoshb R.P., Baumanb R.H. and Pearson D.C. 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232: 525–537.
Crab R., Chielens B., Wille M., Bossier P. and Verstraete W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41: 559–567.
Crab R., Kochva M., Verstraete W. and Avnimelech Y. 2009. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40: 105–112.
Drotman R. and Lawhan G. 1978. Serum enzymes are indications of chemical induced liver damage. Drug and Chemical Toxicology, 1: 163–171.
Ekasari J., Angela D., Waluyo S.H., Bachtiar T., Surawidjaja E.H., Bossier P. and De Schryver P. 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426: 105–111.
Emerenciano M., Ballester E.L.C., Cavalli R.O. and Wasielesky W. 2012. Biofloc technology application as a food source in a limited water exchange nursery system for Pink shrimp (Farfantepenaeus brasiliensis). Aquaculture Research, 43: 447–457.
Green B.W., Rawles S.D., Schrader K.K., Gaylord T.G. and McEntire M.E. 2019. Effects of dietary protein content on hybrid tilapia (Oreochromis aureus × O. niloticus) performance, common microbial off-flavor compounds, and water quality dynamics in an outdoor biofloc technology production system. Aquaculture, 503: 571–582.
Hargreaves J.A. 2006. Photosynthetic suspended-growth systems inaquaculture. Aquacultural Engineering, 34: 344–363.
Hossein Khanjani M., Sajjadi M.M., Alizadeh A. and Sourinejad I. 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei) cultivated in a biofloc system: The effect of adding different carbon sources. Aquaculture Research, 48: 1491–1501.
Jatoba A.,  Correa Da Silva B.C.,  Da Silva J.S., Nascimento Vieira F., Mourino J.L.P. and Quadros Seiffert W. 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture, 432: 365–371.
Kumar S., Anand P.S.S., De D., Deo A.D., Ghoshal T.L., Sundaray J.K., Ponniah A.G., Jithendran K.P., Raja R.A., Biswas G. and Lalitha N. 2017. Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp (Penaeus monodon). Aquaculture Research, 48: 1168–1182.
Mahanand S.S., Moulick S. and Rao P.S. 2013. Water quality and growth of rohu (Labeo rohita) in a biofloc system. Journal of Applied Aquaculture, 25: 121–131.
Mahious A.S., Gatesoupe F.J., Hervi M., Metailler R. and Ollevier F. 2006. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot (Psetta maxima). Aquaculture International, 14: 219–229.
Maica P.F., De Borba M.R. and Wasielesky W. Jr. 2012. Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei juveniles reared in a zero-water-exchange superintensive system. Aquaculture Research, 43: 361–370.
Mansour A.T. and Esteban M.A. 2017. Effects of carbon sourcesand plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 64: 202–209.
Martinez-Cordova L.R., Emerenciano E., Miranda-Baeza A. and Martinez-Porchas M. 2014. Microbial based systems for aquaculture of fish and shrimp: An updated review. Reviews in Aquaculture, 6: 1–18.
Pan C.H., Chien Y.H. and Hunter B. 2003. The resistance to ammonia stress of Penaeus monodon Fabricius juvenile fed diets supplemented with astaxanthin. Journal of Experimental Marine Biology and Ecology 297: 107–118.
Panigrahi A., Sundaram M., Saranya C., Swain S., Dash R.R. and Dayal J.S. 2019. Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish and Shellfish Immunology, 86: 1207–1216.
Rajkumar M., Pandey P.K., Aravind R., Vennila A., Bharti V. and Purushothaman C.S. 2016. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei. Aquaculture Research, 47(11): 3432–3444.
Ross N.W., Firth K.J., Wang A., Burka J.F. and Jojnson S.C. 2000. Changes in hydrolytic enzyme activities of Atlantic salmon (Salmo salar) skin mucus due to infection with the salmon louse (Lepeophtheirus salmonis) and cortisol implantation. Disease of Aquatic Organisms, 41: 43–51.
Sahoo P.K. 2006. Immune competent organs in teleosts. P: 1–12. In: Swain P., Sahoo P.K. and Ayyappan S. (Eds.). Fish and Shellfish Immunology: An Introduction. Narendra Publishing House, India.
Schryver P.D., Crab R., Defoirdt T., Boon N. and Verstaete W. 2008. The basic of bio-floc technology: The added value for aquaculture. Aquaculture, 255: 125–137.
Serra F.P., Gaona C.A.P., Furtado P.S., Poersch L.H. and Wasielesky W. Jr. 2015. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture International, 23: 1325–1339.
Shahsavani D., Mohri M. and Gholipour Kanani H. 2008. Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiology and Biochemistry, 36(1): 39–43.
Son V.N., Phuong N.T., Hai T.N. and Yakupitiyage A. 2011. Production and economic efficiencies of intensive black tiger prawn (Penaeus monodon) culture during different cropping seasons in the Mekong delta, Vietnam. Aquaculture International, 19: 555–566.
Verma A., Rani A.B., Rathore G., Saharan N. and Gora A.H. 2016. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457: 61–67.
Wang G., Yu E., Xie J., Yu D., Li Z., Luo W., Qiu L. and Zheng Z. 2015. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp (Carassius auratus). Aquaculture, 443: 98–104.
Wasielesky W. Jr., Froes C., Foes G., Krummenauer D., Lara G. and Poersch L. 2013. Nursery of Litopenaeus vannamei reared in a biofloc system: The effect of stocking densities and compensatory growth. Journal of Shellfish Research, 32: 799–806.
Xu W.J. and Pan L.Q. 2014. Dietary protein level and C/N ratio manipulation in zero‐exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquaculture Research, 45: 1842–1851.
Zhao D., Pan L., Huang F., Wang C. and Xu W. 2016. Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero-water exchange culture tanks. Journal of World Aquaculture Society, 47: 566–576.