The effect of glutamine on growth, blood and immunity parameters in Siberian sturgeon (Acipenser baerii, Brandt 1869)

Document Type : Research Paper

Authors

1 M.Sc. in Fisheries, Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2 Associate Professor in Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran

3 Assistant Professor in Inland Waters Aquaculture Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Anzali, Iran

Abstract

Siberian sturgeon is a suitable species for using in aquaculture industry. The purpose of this study was to investigate the effect of glutamine on growth and blood and immunity indices of Siberian sturgeon fingerling and to determine the optimal amount of glutamine in rearing conditions. This study was performed on 126 fish with a mean weight of 45.71±7.56g in six treatments (control, 5, 10, 15, 20 and 30g glutamine/kg diet) and three replicates during 8 weeks. The results showed that there was no significant difference in growth factors (P>0.05). However, final weight, final length, the percentage of increasing body weight, feed conversion ratio, specific growth factor and daily growth rate were higher in fish fed the diet containing 30g glutamine/kg diet compared to other treatments. The highest obesity coefficient was observed in fish fed the diet containing 5g glutamine/kg diet. Also, there was no significant difference in red and white blood cell count, hemoglobin, hematocrit, MCV, MCH, MCHC, neutrophil and lysozyme (P>0.05), but lymphocytes, monocytes, eosinophils, IgM and total immunoglobulin were significantly different (p < 0.05). Glutamine had no significant effect on most of the blood parameters of Siberian sturgeon, but an increase in immunity parameters such as lymphocytes, monocytes, total immunoglobulin and IgM was observed. It seems that the addition of glutamine to the basal diet is not necessary in this age and culture conditions and the basal diet supports the needs of fish.

Keywords


افشارمازندران ن. 1381. راهنمای علمی تغذیه و نهاده­های غذایی و دارویی آبزیان در ایران. چاپ سما رنگ، 216ص.
پورعلی فشتمی ح.، بهمنی م.، شکوریان م.، حسنی س.ح. و یارمحمدی م. 1393. مطالعه اثر اسید آمینه آلانین بر شاخص‌های رشد، تغذیه و بازماندگی بچه تاس­ماهیان ایرانی (Acipenser persicus) انگشت‌قد. نشریه توسعه آبزی­پروری، 8(1): 33-19.
پیک­موسوی م.، بهمنی م.، سواری ا.، محسنی م. و حقی ن. 1389. بررسی سطوح مختلف اسید آمینه متیونین بر فاکتورهای رشد و ترکیبات بدن بچه فیل­ماهیان جوان (Husohuso). نشریه تحقیقات دامپزشکی و فرآورده‌های بیولوژیک، 24(4): 19-12.
جمال­­زاده ح.، کیوان آ.، عریان ش. و قمی مرزدشتی م.ر. 1387. بررسی سطوح برخی از شاخص‌­های خونی و بیوشیمیایی ماهی آزاد دریای مازندران (Salmo trutta caspius). مجله علمی شیلات ایران، 17(3): 54-47.
عامری مهابادی م. 1378. روش­های آزمایشگاهی هماتولوژی دامپزشکی. انتشارات دانشگاه تهران. 126ص.
عربن.،رجبی­اسلامی ه. وشمسایی­مهرجان م. 1392. تاثیر ویتامین C در میزان بقا و شاخص­های رشد بچه ماهی آزاد دریای مازندران (Salmo trutta caspius). مجله منابع طبیعی ایران، 66(3): 346-331.
قاسم­زاده ج.، نوروزی ز.، سینایی م.، زادعباس­ ­شاه­آبادی ح. و ملاحی­دولابی ف. 1397. بررسی اثر اسیدآمینه سیستئین بر پارامترهای خونی ماهی کفال خاکستری (Mugilcephalus L.) در برابر آلودگی فلزات سنگین مس و روی. نشریه علمی پژوهشی پژوهش­های ماهی­شناسی کاربردی، 6(1): 122-105.
کرامت ع. و ابولفضلی آ. 1396. اثرات متقابل اسید آمینه میتونین و ال‌کارنتین بر پارامترهای رشد، ترکیب لاشه و برخی پارامترهای خونی ماهی قزل‌آلای رنگین‌کمان (Oncorhynchus mykiss). مجله علمی شیلات ایران، 26(3): 118-۱۰۵.
مومن­نیا م.، آرین­نژاد غ.ر.، مینوفر ک.، بهشتی سرشت ن.، هادیبرادران طهوری ه. و متین­فر م. 1389. تکثیر و پرورش ماهیان خاویاری، معرفی زمینه­های سرمایه­گذاری در زیربخش شیلات. سازمان شیلات ایران. 74ص.
Amar E.C., Kiron V., Satoh S., Okamoto N. and Watanabe T. 2000. Effects of dietary b-carotene on the immune response of rainbow trout (Oncorhynchus mykiss). Fisheries Sciences, 66: 1068–1075.
AOAC (Association of Official Analytical Chemist). 1995. Official Method of Analysis. AOAC, USA. 697P.
Balabanova L.V., Mikryakov D.V. and Mikryakov V.R. 2009. Response of common carp (Cyprinus carpio L.) leucocytes to hormoneinduced stress. Inland Water Biology, 2(1): 86–88.
Bani A. and Haghi-Vayghan A. 2011. Temporal variations in haematological and biochemical indices of the Caspian kutum, Rutilus frisii kutum. Ichthyological Research, 58: 126–133.
Bartell S.M. and Batal A.B. 2007. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poultry Science, 86: 1940–1947.
Bicudo A.J.A., Sado R.Y. and Cyrino J.E.P. 2009. Dietary lysine requirement of juvenile pacu Piaractus mesopotamicus (Holmberg, 1887). Aquaculture, 297: 151–156.
Blaxhall P.C. and Daisley K.W. 1983. Roution haematological methods for use with fish blood. Fish Biology, 5: 771–781.
Brauge C., Corraze G. and Medale F. 1995. Effect of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in freshwater or in seawater. Comparative Biochemistry and Physiology, 111: 117–124.
Bureau D.P., Hua K. and Cho C.Y. 2006. Effects of feeding level on growth and nutrient deposition in rainbow trout (Oncorhynchus mykiss) growing from 150 to 600g. Aquaculture Research, 37: 1090–1098.
Cai Y. and Burtle G.J. 1996. Methionine requirement of channel catfish fed soybean meal-corn-based diets. Animal Science, 74: 514–521.
Choi B.S., Martinez-Falero I.C., Corset C., Munder M., Modolell M., Muller I. and Kropf P. 2009. Differential impact of L-arginine deprivation on the activation and effector functions of T cells and macrophages. Journal of Leukocyte Biology, 85(2): 268–277.
Deng D.F., Koshio S., Yokoyama S., Bai S.C., Shao Q., Cui Y. and Hung S.S.O. 2003. Effects of feeding rate on growth performance of white sturgeon (Acipenser transmontanus) Larvae. Aquaculture, 217: 589–598.
Ellis A.E. 1977. The Leucocytes of fish: A review. Journal of Fish Biology, 11(5): 453–491.
Gatlin D.M. 2002. Nutrition and fish health. P: 671–702. In: Halver J.E. and Hardy R.W. (Eds.). Fish Nutrition. Academic Press, USA.
Gershanovich A.D. and Taufik L.R. 1992. Feeding dynamics of sturgeon fingerlings (Acipenseridae) depending on food concentration and stocking density. Journal of Fish Biology, 41: 425–453.
Gomulka T., Wlasow P., Velisek J., Svobodova Z. and Chmielinska E. 2008. Effects of eugenol and MS-222 anesthesia on Siberian sturgeon (Acipenser baerii Brandt). Acta Veterinaria Brno, 77(3): 447–453.
Han Y., Koshio S., Jiang Z., Ren T., Ishikawa M., Yokoyama S. and Gao J. 2014. Interactive effects of dietary taurine and glutamine on growth performance, blood parameters and oxidative status of Japanese flounder Paralichthys olivaceus. Aquaculture, 434: 348–354.
Houston A.H. 1990. Blood and circulation. P: 273–334. In: Schreck C.B. and Moyle P.B. (Eds.). Methods in Fish Biology. American Fisheries Society, USA.
Hued A. and Bistoni M.A. 2002. Effects of water quality variations on fish communities in the Central Part of Argentina, South America. Proceeding of the International Association of Theoretical and Applied Limnology, 28: 112–116.
Hung S.S.O. 2000. Feeds and feeding of sturgeon. International Aquafeed, 4: 24–27.
Hung S.S.O., Lutes B.P. and Storebakken T. 1989. Growth and feed efficiency of white sturgeon (Acipenser transmontanus) subyearling at different feeding rates. Aquaculture, 80: 147–153.
Imanpoor M.R. and Bagheri T. 2012. Effect of replacing meal by soybean meal along with supplementing phosphorus and magnesium in diet on growth performance of Persian sturgeon, Acipenser persicus. Fish Physiology and Biochemistry, 38(2): 521–528.
Jankowski J., Kubinska M. and Zdunczyk Z. 2014. Nutritional and immunomodulatory function of methionine in poultry diets- A review. Annals of Animal Science, 14(1): 17–31.
Kavitha C., Malarvizhi S., Senthil K. and Ramesh M. 2010. Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food and Chemical Toxicology, 48: 2848–2854.
Klontz G.W. 1994. Fish hematology. P: 121–132. In: Stolen J.S., Fletcher T.C., Rowley A.F., Kelikoff T.C., Kaattari S.L. and Smith S.A. (Eds.). Techniques in Fish Immunology. SOS Publications, USA.
Li P., Yin Y.L., Li D., Kim S.W. and Wu G. 2007. Amino acids and immune function. British Journal of Nutrition, 98(2): 237–252.
Lovell R.T. 1998. Nutrition and Feeding of Fish. Van Nostrand Reinhold, USA. 268P.
Luo Z., Liu Y., Mai K., Tian L., Yang H., Tan X. and Liu D. 2005. Dietary L methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cyctine level. Aquaculture, 249: 409–418.
Lupatsch I., Kissil G.W. and Sklan D. 2001. Optimization of feeding regimes for European sea bass Dicentrarchus labrax: A factorial approach. Aquaculture, 202: 289–302.
Machado M., Azeredo R., Fontinha F., Fernandez-Boo S., Conceicao L.E., Dias J. and Costas B. 2018. Dietary methionine improves the European seabass (Dicentrarchus labrax) immune status, inflammatory response, and disease resistance. Frontiers in Immunology, 9: 1–17 (2672).
Mai K., Wan J., Ai Q., Xu W., Liufu Z., Zhang L., Zhang C. and Li H. 2006. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea. Aquaculture, 253: 564–572.
Medale F., Corrze G. and Kaushik S.J. 1995. Nutrition of farmed Siberian sturgeon. P: 289–298. In: Gershanovic A.D. and Smith T.I.J. (Eds.). Proceedings of the Third International Symposium on Sturgeons. VNIRO Publishing, Russia.
Merrifield D.L., Bradley G., Harper G.M., Baker R.T.M., Munn C.B. and Davies S.J. 2011. Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 17(3): 73–79.
Murakami A.E., Sakamoto M.I., Natali M.R.M., Souza L.M.G. and Franco J.R.G. 2007. Supplementation of glutamine and vitamin E on the morphometry of the intestinal mucosa in broiler chickens. Poultry Science, 86: 488–495.
Nakajo T., Yamatsuji T., Ban H., Shigemitsu K., Haisa M., Motoki T., Noma K., Nobuhisa T., Matsuoka J., Gunduz M., Yonezawa K., Tanaka N. and Naomoto Y. 2005. Glutamine is a key regulator for amino acid-controlled cell growth through the mTOR signaling pathway in rat intestinal epithelial cells. Biochemical and Biophysical Research Communications, 326: 174–180.
Newsholme P. 2001. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? Journal of Nutrition, 131: 2515–2522.
Pohlenz C., Buentello A., Bakke A. and Gatlin III D.M. 2012a. Free dietary glutamine improves intestinal morphology and increases enterocyte migration rates, but has limited effects on plasma amino acid profile and growth performance of channel catfish Ictalurus punctatus. Aquaculture, 370-371: 32–39.
Pohlenz C., Buentello A., Mwangi W. and Gatlin III D.M. 2012b. Arginine and glutamine supplementation to culture media improves the performance of various channel catfish immune cells. Fish and Shellfish Immunology, 32(5): 762–768.
Polat A. 1999. The effects of methionine supplementation to soybean meal (SBM)-based diets on the growth and whole body-carcass chemical composition of tilapia (T. zilli). Turkısh Journal of Zoology, 23: 173–178.
Pottinger T.G. and Carrick T.R. 2001. A comparison of plasma glucose and plasma cortisol as selection markers for high and low stress-responsiveness in female rainbow trout. Aquaculture Research, 175: 351–363.
Qiyou X., Qing Z., Hong X., Changan W. and Dajiang S. 2011. Dietary glutamine supplementation improves growth performance and intestinal digestion/absorption ability in young hybrid sturgeon (Acipenser schrenckii♀ × Huso dauricus♂). Journal of Applied Ichthyology, 27: 721–726.
Rad F., Koksal G. and Kindir M. 2003. Growth performance and feed conversion ratio of Siberian sturgeon (Acipenser baerii) at different dally feeding rates. Turkisk Journal of Vetinery Animal Science, 24: 1085–1090.
Rhoads M.J. and Wu G. 2009. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids, 37: 111–122.
Ronyai A., Csengeri I. and Varadi L. 2001. Partial substitution of animal protein with full-fat soybean meal and amino acid supplementation in diet of Siberian sturgeon. 4th International Symposium on Sturgeon, USA. P: 8–13.
Shiau S.Y. and Huang S.L. 1990. Influence of varying energy levels with two protein concentrations in diets for hybrid tilapia (Oreochromis niloticus x O. aureus) reared in sea water. Aquaculture, 91: 143–152.
Siwicki A.K. and Anderson D.P. 1993. Nonspecific defence mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (T-Ig) levels in serum. Fish Diseases Diagnosis and Prevention’s Methods. FAO-Project GCP/INT/526/JPN, IFI Olsztyn. P: 105–112.
Soltan M.A. 2009. Influence of dietary glutamine supplementation on growth performance, small intestinal morphology, immune response and some blood parameters of broiler chickens. International Journal of Poultry Science, 8: 60–68.
Steffens W., Jannichen H. and Fredrich F. 1990. Possibilities of sturgeon culture in central Europe. Aquaculture, 89: 101–122.
Stoskopf M.K. 1993. Fish Medicine. Saunders Company, Philadelphia. 882P.
Tayade C., Jaiswal T.N., Mishra S.C. and Koti M. 2006. L-arginine stimulates immune response in chickens immunized with intermediate plus strain of infectious bursal disease vaccine. Vaccine, 4: 552–560.
Torrecillas S., Makol A., Caballero M.J., Montero D., Gines R., Sweetman J. and Izquierdo M.S. 2011. Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquaculture Nutrition, 17(2): 223–233.
Waddell D. and Fredricks K. 2005.  Effects of glutamine supplement on the skeletal muscle contractile force of mice. American Journal of Undergraduate Research, 4: 11–18.
Wang J., Chen L., Li P., Li X., Zhou H., Wang F., Li D., Yin Y. and Wu G. 2008. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. Journal of Nutrition, 138: 1025–1032.
Webster C.C. and Lim C.E. 2002. Nutrient Requirement and Feeding of Finfish for Aquaculture. CAB International, CABI Publishing, UK. 448P.
Whyte S.K. 2007. The innate immune response of finfish: A review of current knowledge. Fish and Shellfish Immunology, 23: 1127–1151.
Williot P., Sabiau L., Gessner J., Arlati G., Bronzi P., Gulyas T. and Berni P. 2001. Sturgeon farming in Western Europe: Recent developments and perspectives. Aquatic Living Resources, 14(6): 367–374.
Wu G., Bazer F.W., Johnson G.A., Knabe D.A., Burghardt R.C., Spencer T.E., Li X.L. and Wang J.J. 2011. Important roles for L-glutamine in swine nutrition and production. Journal of Animal Science, 89: 2017–2030.
Wu G., Knabe D.A. and Flynn N.E. 1994. Synthesis of citrulline from glutamine in pig enterocytes. Biochemical Journal, 299: 115–121.
Yan L. and Qiu-Zhou X. 2006. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 256: 389–394.
Yi G., Allee G., Knight C. and Dibner J. 2005. Impact of glutamine and Oasis hatchling supplement on growth performance, small intestinal morphology, and immune response of broilers vaccinated and challenged with Eimeria maxima. Poultry Science, 84: 283–293.
Zapata A.G., Torroba M. and Varas A. 1997. Vitaminize E. Immunity in fish larvae. Development Biology Standard, 90: 23–32.
Zhu Q., Xu Q.Y., Xu H., Wang C.A. and Sun D.J. 2011. Dietary glutamine supplementation improves tissue antioxidant status and serum non-specific immunity of juvenile hybrid sturgeon (Acipenser schrenckii♀ × Huso dauricus♂). Journal of Applied Ichthyology, 27(2): 715–720.
Zou X.T., Zheng G.H., Fang X.J. and Jiang J.F. 2006. Effects of glutamine on growth performance of weanling piglets. Czech Journal of Animal Science, 51: 444–448.