The effect of salinity and light intensity stress on fresh weight and some biochemical parameters in green algae Scenedesmus obliquus

Document Type : Research Paper


1 MSc. Plant Biology, Biology Department, Shahid Bahonar University of Kerman, Kerman, Iran

2 Associate Professor in Biology Department, Shahid Bahonar University of Kerman, Kerman, Iran


In this study, the effects of salinity and light intensity stress on the fresh weight, some of   pigments, protein and carbohydrates has been studied in green algae Scenedesmus obliquus. For salt stress, BG11 culture was used with 0, 100, 200 and 300mM NaCl concentrations and for light intensity stress a week after subculture, algae were exposed to 114 μmol.m-2.s-1 light intensity for 0, 2, 4 and 6 days. Samples were harvested 14 days after subculture and fresh weight of Scenedesmus decreased under both stress. The lowest fresh weight was observed in 300 mM NaCl and six days light intensity treatment and controls were the most. Also the amount of carotenoids severely decreased under these stress. The most of β-carotene and lutein were observed in the control samples and the lowest of them in 300 mM of salt concentration and six day treatment of light intensity. The amount of astaxanthin increased under both stress. These results showed that salinity in applied concentration and also light intensity in different levels significantly reduced growth but increased astaxanthin content. In addition, growth reduction and other parameters were indicative low resistant and incompatibility of this species of algae to salinity and light intensity stress.


حلمی سرشت م.، سعادتمند س. و خاورینژاد ر. 1394. بررسی تاثیر شدت نور و pH بر میزان رشد، محتوای پروتئین و چربی در Spirulina platensis. مجله زیست‌شناسی کاربردی، 28(1): 50-37.
شریعتی م. و مددکار حقجو ر. 1397. بررسی اثر تنش شوری بر میزان بتاکاروتن و کلروفیل محتوایی جلبک تک سلولی دو نالیه لاسالینا (Dunaliella salina) جدا شده از مرداب گاوخونی اصفهان. مجله پژوهشی علوم پایه دانشگاه اصفهان، 14(2): 66-55.
فرامرزیم.، فروتنفر ح. و شکیباییم. 1389.  بیوتکنولوژی ریزجلبک­ها. انتشارات دانشگاه تهران. 293ص.
Allakhverdiev S.I., Sakamoto A., Nishiyama Y., Inaba M. and Murata N. 2000. Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123: 1047–1056.
Astorga G. and Melendez L. 2010. Salinity effects on protein content, lipid peroxidation, pigments and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electronic Journal of Biotechnology, 13(5): 1–13.
Borowitzka M., Huisman J. and Osborn A. 1991. Culture of the astaxanthin- producing green alga Haematococcus pluvialis. Journal of Applied Phycology, 3: 295–304.
Bradford M.M. 1976. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254.
Britton G. 1995. Structure and properties of carotenoids in relation to function. Journal of Faseb, 9(15): 1551–1558.
Britton G., Liaaen-Jensen S. and Pfander H. 1998. Carotenoids: Biosynthesis and metabolism. Birkhauser Basel, Switzerland. 400P. 
Charioui I., Chikhaoui M., El Filali F., Abbassi M., Banaoui A. and Kaaya A. 2017. Production in cell biomass and carotenoids under the effect of a saline stress in        microalgae Dunaliella spp. isolated from Moroccan Saharian Saline. International Journal of Current Microbiology and Applied Sciences, 6(8): 286–294.
Dere S., Gunes T. and Sivaci R. 1998. Spectrophotometric determination of chlorophyll a, b and total carotenoid contents of some algal species using different      solvents. Journal of Botany, 22: 13–17.
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A. and Smith F. 1956. Phenol sulphuric acid method for total carbohydrate. Analytical Chemistry, 26: 350.
Faraloni C. and Torzillo G. 2017. Synthesis of antioxidant carotenoids in microalgae in response to physiological stress. P: 143–157. In: Cvetkovic D.J. and Nikolic G.S. (Eds.). Carotenoids. IntechOpen, UK.
Garbayo I., Cuaresma M., Vilchez C. and Vega M. 2000. Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochemistry, 2: 111–119.
Goodwin T. and Britton G. 1988. Distribution and analysis of carotenoids. P: 61–132. In: Goodwin T.W. (Ed.). Plant Pigments. Academic Press, Cornwall.
Guerin M., Huntley M.E. and Olaizola M. 2003. Haematococ­cus astaxanthin: Applications for human health and nu­trition. Trend in Biotechnology, 21: 210–216.
Guillard R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. P: 26–60. In: Smith W.L. and Chanley M.H. (Eds.). Culture of Marine Invertebrate Animals. Plenum Press, USA.
Harker M., Tsavalos A. and Young A. 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresource Technology, 55: 207–214.
Johnson J., Racusen D. and Bonner J. 1954. The metabolism of isoprenoid precursors in a plant system. National Academy of Sciences, 40(11): 1031–1037.
Kirrolia A., Bishnoia N. and Singh N. 2011. Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. Journal of Algal Biomass Utilization, 2(4): 28–34.
Kumar P., Ramakritinan C.M. and Kumaraguru A.K. 2010. Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of Puthumadam, Southeast Coast of India. International Journal of Oceans and Oceanography, 4(1): 29–34.
Li Y., Miao F., Geng Y., Lu D., Zhang C. and Zeng M. 2012. Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically. ChineseJournal of Oceanology and Limnology, 30(4): 627–637.
Miki W. 1991. Biological functions and activities of animal carotenoids. Pure and Applied Chemistry, 63: 141–146.
Moein M. and Shariati M. 2011. Effect of salicylic acid and salt stress on growth (cell division), photosynthetic pigments and beta-carotene content of unicellular alga Dunaliella salina Teod. Iranian Journal of Biology, 23(5): 638–647.
Pocock T., Krol M. and Huner N. 2005. The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry. Methods in Molecular Biology, 274: 137–148.
Qin S., Liu G. and Hu Z. 2008. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochemistry, 43: 795–802.
Ranga Rao A., Dayananda C., Sarada R., Shamala T.R. and Ravishankar G.A. 2007. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 98: 560–556.
Rise M., Cohen E., Vishkautsan M., Cojocaru M., Gottlieb H.E., and Arad S.M. 1994. Accumulation of secondary carotenoids in Chlorella zofingiensis. Journal of Plant Physiology, 144: 287–292.
Sanda O., Cosmin S. and Teodor R. 2012. Influence of high light intensity on the cells of cyanobacteria Anabaena variabilis sp. atcc 29413. Journal of Plant Development, 19: 23–28.
Sarada R., Tripathi U. and Ravishankar G.A. 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochemistry, 37: 623–627.
Solovchenko A.E. 2013. Physiology and adaptive significance of secondary carotenogenesis. Russian Journal of Plant Physiology, 60(1): 1–13.
Sysoeva M.I., Markovskaya E.F. and Shibaeva T.G. 2010. Plants under continuous light. Plant Stress, 4: 5–17.
Trainor R.F., Cain R.J. and Shubert L.E. 1976. Morphology and nutrition of the colonial green alga Scenedesmus: 80 years later. Botanical Review, 42(1): 5–25.
Van Breusegem F., Vranova E., Dat   J.F. and Inze D. 2001. The role of active oxygen species in plant signal transduction. Plant Sciences, 161: 405–414.
Vishnevetsky M., Ovadis M. and Vainstein A. 1999. Carotenoid sequestration in plants: The role of carotenoid associated proteins.  Trends Plant Science, 4(6): 232–235.
Zarandi-Miandoab L., Hejazi M., Bagherieh-Najjar M. and Chaparzadeh N. 2015. Light intensity effects on some molecular and biochemical characteristics of Dunaliella salina. Iranian Journal of Plant Physiology, 5(2): 1311–1321.