Evaluation of antibacterial and antibiofilm activity of phases extracted from coelomic fluid of burrowing urchin (Echinometra mathaei)

Document Type : Research Paper


1 Ph.D. Student in Fisheries-Seafood Processing, Department of Seafood Processing, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran

2 Associate Professor in Department of Seafood Processing, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran

3 Professor in Department of Seafood Processing, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran

4 Associate Professor in Department of Biological, Faculty of Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy


Marine echinoderms, including sea urchins, have a high ability to survive due to living in shallow environments that are suitable for the growth of microbes. Due to such unique characteristics, much attention has been paid to the purification and identification of a variety of bioactive compounds, especially antimicrobial peptides. Therefore, the present study aimed to investigate the coelomic fluid of the burrowing urchin (Echinometra mathaei), as the most abundant species in the Persian Gulf, and to extract the aqueous and organic phases from coelomocyte cells by a particular solvent. The results of the agar disk and well diffusion assays showed that the organic phase had a higher antibacterial activity, which could be attributed to its protein content. The organic phase at a concentration of higher than 12.5mg.mL-1 caused complete inhibition of the bacterial biofilm, while it destroyed the biofilm completely in the concentration of 100mg.ml-1. The organic phase lacked haemolytic activity at the concentration of 100mg.ml-1 and even inhibited the red blood cell haemolysis. Based on the results, it is suggested that the organic phase extracted from the burrowing urchin coelomocyte may be considered for the extraction and identification of antimicrobial compounds.


اصلیان ح.، کامرانی ا.، یوسفزادی م. و کشاورز م. 1394. بررسی اثر ضدباکتری عصاره‌های مختلف استخراجی از توتیای دریایی Echinometra mathaei. مجله بوم‌شناسی آبزیان. 5(3): 144-139.
ایراجیان غ.، برومند م.، مرندی ف.ر.، رهبر م.، شاهچراغی ف.، شریفی م.، صارمی م.، فلاح ف. و ولیزاده ب. 1391. استاندارد عملکردی آزمایش تعیین حساسیت ضدمیکروبی به روش انتشار از دیسک. مرکز نشر صدا. 164ص.
خالقی م. و عوفی ف. 1389. شناسایی گونه‌های خارپوستان دریایی در نواحی بین جزر و مدی خلیج  چابهار.  محیط  زیست  جانوری،  2(4): 36-31.
راهی س.، حیدری ب. و رسا م. 1393. اثرات عصاره‌های آلی و آبی استخراج شده از توتیای دریایی خلیج فارس (Echinometra mathaei) بر سه سویه بیماری‌زای قارچ Candida. نشریه فیزیولوژی و بیوتکنولوژی آبزیان، 2(3): 45-31.
راهی س.، حیدری ب. و رسا م. 1396. اثرات ضدباکتریایی بخش‌های مختلف توتیای دریایی خلیج فارس. نشریه توسعه آبزی‌پروری، 11(3): 40-29.
سلیمانی س.، معین س.، یوسفزادی م. و امراللهی بیوکی ن. 1394ب. بررسی اثر عصاره‌های مختلف توتیای دریایی Echinometra mathaei بر فعالیت آنزیم آلفاآمیلاز. مجله دیابت و متابولیسم ایران، 15(2): 83-75.
سلیمانی س.، یوسفزادی م.، معین س. و امراللهی بیوکی ن. 1394الف. بررسی اثرضدالتهابی توتیای دریایی Echinometra mathaei  خلیج فارس. طب جنوب، 18(6): 1220-1208.
سلیمانی س.، یوسفزادی م.، معین س. و امراللهی بیوکی ن. 1394ج. بررسی اثرات ضدمیکروبی و آنتی‌اکسیدانی رنگدانه و مایع سلومیک توتیای دریایی گونه Echinometra mathaei  خلیج فارس. مجله دانشگاه علوم پزشکی کرمان، 22(6): 628-614.
سلیمانی س.، یوسفزادی م.، معین س. و امراللهی بیوکی ن. 1395. انتخاب روش بهینه استخراج مایع سلومیک توتیای دریایی (Echinometra mathaei) خلیج فارس و شناسایی برخی رنگدانه‌های نفتاکینونی آن. مجله پژوهش‌های جانوری، 29(2): 214- 205.
شکوری آ. و جوانمرد ا.ا. 1394. بررسی اثر ضدباکتریایی پوسته توتیای دریایی گونهEchinometra mathaei ساحل چابهار. مجله زیست‌شناسی جانوری تجربی، 3(4): 35-25.
شکوری آ.، جوانمرد ا.ا. و سهیلی ف. 1394. اثر ضدباکتریایی عصاره‌های مختلف استخراجی از اندام‌های توتیای دریایی (Echinometramathaei) در ساحل چابهار. مجله علمی پژوهشی زیست‌شناسی دریا، 6(25): 82-73.
نوربخش ه. و عمادی ح. 1387. ‏‫توتیای دریایی از زیست‌شناسی تا تکثیر و پرورش. انتشارات علمی آبزیان. 166ص.
APD Database. 2019. Antimicrobial Peptide Database. Retrieved August 03, 2019, from http://aps.unmc.edu/AP/.
Balouiri M., Sadiki M. and Ibnsouda S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2): 71–79.
Bertheussen K. 1981. Endocytosis by echinoid phagocytes in vitro. II. Mechanisms of endocytosis. Developmental and Comparative Immunology, 5(4): 557–564.
Bertheussen K. 1983. Complete-like activity in sea urchin coelomic fluid. Developmental and Comparative Immunology, 7: 21–31.
Bertheussen K. and Seljelid R. 1978. Echinoid phagocytes in vitro. Experimental Cell Research, 111: 401–412.
Boto A., Perez De La Lastra J. and Gonzalez C. 2018. The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules, 23(2): 311 (1–26).
Canicatti C. and D’Ancona G. 1990. Biological protective substances in Marthasterias glacialis (Asteroidea) epidermal secretion. Journal of Zoology, 222(3): 445–454.
Chiaramonte M. and Russo R. 2015. The echinoderm innate humoral immune response. Italian Journal of Zoology, 82(3): 300–308.
Chopra L., Singh G., Kumar Jena K. and Sahoo D.K. 2015. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Scientific Reports, 5: 1–??? (13412).
CLSI. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. Clinical and Laboratory Standards Institute, USA. 92P.
Coates C.J., McCulloch C., Betts J. and Whalley T. 2018. Echinochrome-A release by red spherule cells is an iron-withholding strategy of sea urchin innate immunity. Journal of Innate Immunity, 10(2): 119–130.
Coffaro K.A. and Hinegardner R.T. 1977. Immune response in the sea urchin Lytechinus pictus. Science, 197(4311): 1389–1390.
Das S. and Dash H. 2014. Microbial Biotechnology- A Laboratory Manual for Bacterial Systems. Springer, India. 239P.
Gerardi P., Lassegues M. and Canicatti C. 1990. Cellular distribution of sea urchin antibacterial activity. Biology of the Cell, 70(3): 153–157.
Gomes B., Augusto M.T., Felicio M.R., Hollmann A., Franco O.L., Goncalves S. and Santos N.C. 2018. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnology Advances, 36(2): 415–429.
Gross P.S., Clow L.A. and Smith L.C. 2000. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics, 51(12): 1034–1044.
Hatakeyama T., Kohzaki H., Nagatomo H. and Yamasaki N. 1994. Purification and characterization of four Ca2+-dependent lectins from the marine invertebrate, Cucumaria echinata. The Journal of Biochemistry, 116(1): 209–214.
Haug T., Kjuul A.K., Stensvag K., Sandsdalen E. and Styrvold O.B. 2002b. Antibacterial activity in four marine crustacean decapods. Fish and Shellfish Immunology, 12(5): 371–385.
Haug T., Kjuul A.K., Styrvold O.B., Sandsdalen E., Olsen O.M. and Stensvag K. 2002a. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). Journal of Invertebrate Pathology, 81(2): 94–102.
Hibino T., Loza-Coll M., Messier C., Majeske A.J., Cohen A.H., Terwilliger D.P., Buckley K.M., Brockton V., Nair S.V., Berney K., Fugmann S.D., Anderson M.K., Pancer Z., Cameron R.A., Smith L.C. and Rast J.P. 2006. The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 300(1): 349–365.
Iorrizzi M., Marino S. and Zollo F. 2001. Steroidal oligoglycosides from the Asteroidea. Current Organic Chemistry, 5(9): 951–973.
Johnson P.T. 1970. The coelomic elements of sea urchins (Strongylocentrotus and Centrostephanus)-VI. Cellulose-acetate membrane electrophoresis. Comparative Biochemistry and Physiology, 37(3): 289–300.
Kazemi S., Heidari B. and Rassa M. 2016. Antibacterial and hemolytic effects of aqueous and organic extracts from different tissues of sea urchin Echinometra mathaei on pathogenic streptococci. International Aquatic Research, 8(4): 299–308.
Krapp F., Ozer E.A., Qi C. and Hauser A.R. 2018. Case report of an extensively drug-resistant Klebsiella pneumoniae infection with genomic characterization of the strain and review of similar cases in the United States. Open Forum Infectious Diseases, 5(5): 1–5.
Kumar D., Pornsukarom S. and Thakur S. 2019. Antibiotic usage in poultry production and antimicrobial-resistant Salmonella in poultry. P: 47–66. In: Venkitanarayanan K., Thakur S. and Ricke S. (Eds.). Food Safety in Poultry Meat Production. Food Microbiology and Food Safety. Springer, Switzerland.
Li C., Blencke H.M., Haug T. and Stensvag K. 2015. Antimicrobial peptides in echinoderm host defense. Developmental and Comparative Immunology, 49(1): 190–197.
Li C., Blencke H.M., Haug T., Jorgensen O. and Stensvag K. 2014. Expression of antimicrobial peptides in coelomocytes and embryos of the green sea urchin (Strongylocentrotus droebachiensis). Developmental and Comparative Immunology, 43(1): 106–113.
Li C., Blencke H.M., Smith L.C., Karp M.T. and Stensvag K. 2010a. Two recombinant peptides, SpStrongylocins 1 and 2, from Strongylocentrotus purpuratus, show antimicrobial activity against Gram-positive and Gram-negative bacteria. Developmental and Comparative Immunology, 34(3): 286–292.
Li C., Haug T., Moe M.K., Styrvold O.B. and Stensvag K. 2010b. Centrocins: Isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Developmental and Comparative Immunology, 34(9): 959–968.
Li C., Haug T., Styrvold O.B., Jorgensen T.O. and Stensvag K. 2008. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Developmental and Comparative Immunology, 32(12): 1430–1440.
Liang X., Luo D. and Luesch H. 2019. Advances in exploring the therapeutic potential of marine natural products. Pharmacological Research, 147: 1–41 (104373).
Paulsen V.S., Blencke H.M., Benincasa M., Haug T., Eksteen J.J., Styrvold O.B., Scocchi M. and Stensvag K. 2013. Structure-activity relationships of the antimicrobial peptide arasin 1- and mode of action studies of the N-terminal, proline-rich region. PLoS ONE, 8(1): 1–11 (e53326).
Płytycz B. and Seljelid R. 1993. Bacterial clearance by the sea urchin, Strongylocentrotus droebachiensis. Developmental and Comparative Immunology, 17(3): 283–289.
Rast J.P., Smith L.C., Loza-Coll M., Hibino T. and Litman G.W. 2006. Genomic insights into the immune system of the sea urchin. Science, 314(5801): 952–956.
Schillaci D., Arizza V., Dayton T., Camarda L. and Di Stefano V. 2008. In vitro anti-biofilm activity of Boswellia spp. oleogum resin essential oils. Letters in Applied Microbiology, 47(5): 433–438.
Schillaci D., Arizza V., Parrinello N., Di Stefano V., Fanara S., Muccilli V., Cunsolo V., Haagensen J.J.A. and Molin S. 2010. Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. Journal of Applied Microbiology, 108(1): 17–24.
Schillaci D., Cusimano M., Cunsolo V., Saletti R., Russo D., Vazzana M., Vitale M. and Arizza V. 2013. Immune mediators of sea-cucumber Holothuria tubulosa (Echinodermata) as source of novel antimicrobial and anti-staphylococcal biofilm agents. AMB Express, 3(1): 1–10 (35).
Schillaci D., Cusimano M.G., Spinello A., Barone G., Russo D., Vitale M., Parrinello D. and Arizza V. 2014. Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB Express. 4(78): 1–9.
Schillaci D., Petruso S. and Sciortino V. 2005. 3,4,5,3’,5’-pentabromo-2-(2’-hydroxybenzoyl) pyrrole: A potential lead compound as anti-gram-positive and anti-biofilm agent. International Journal of Antimicrobial Agents, 25(4): 338–340.
Schillaci D., Vitale M., Cusimano M.G. and Arizza V. 2012. Fragments of β-thymosin from the sea urchin Paracentrotus lividus as potential antimicrobial peptides against staphylococcal biofilms. Annals of the New York Academy of Sciences, 1270(1): 79–85.
Service M. and Wardlaw A.C. 1984. Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comparative Biochemistry and Physiology B, 79(2): 161–165.
Shagaghi N., Palombo E.A., Clayton A.H.A. and Bhave M. 2018. Antimicrobial peptides: Biochemical determinants of activity and biophysical techniques of elucidating their functionality. World Journal of Microbiology and Biotechnology, 34(4): 34–62.
Smith L.C. 2005. Host responses to bacteria: Innate immunity in invertebrates. Advances in Molecular and Cellular Microbiology, 10: 293–320.
Smith L.C. and Davidson E.H. 1992. The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunology Today, 13(9): 356–362.
Smith L.C., Ghosh J., Buckley K.M., Clow L.A., Dheilly N.M., Haug T., Henson J.H., Li C., Lun C.M., Majeske A.J. and Matranga V. 2010. Echinoderm immunity. P: 260–301. In: Soderhall K. (Ed.). Invertebrate Immunity. Springer US, USA.
Smith L.C., Rast J.P., Brockton V., Terwilliger D., Nair S.V., Buckley K.M. and Majeske A.J. 2006. The sea urchin immune system. Invertebrate Survival Journal, 3: 25–39.
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J. and Klenk D.C. 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1): 76–85.
Solstad R.G., Li C., Isaksson J., Johansen J., Svenson J., Stensvag K. and Haug T. 2016. Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the edible sea urchin Echinus esculentus have 6-br-trp post-translational modifications. PLoS ONE, 11(3): 1–25.
Stabili L. and Canicatti C. 1994. Antibacterial activity of the seminal plasma of Paracentrotus lividus. Canadian Journal of Zoology, 72(7): 1211–1216.
Ventola C.L. 2015. The antibiotic resistance crisis, Part 1: Causes and threats. A Peer-reviewed Journal for Formulary Management, 40(4): 277–283.
Wang G. 2017. Antimicrobial peptides: Discovery, design and novel therapeutic strategies. CABI, UK. 261P.
Wardlaw A.C. and Unkles S.E. 1978. Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus. Journal of Invertebrate Pathology, 32(1): 25–34.
Yui M.A. and Bayne C.J. 1983. Echinoderm immunology: Bacterial clearance by the sea urchin Strongylocentrotus purpuratus. The Biological Bulletin, 165(2): 473–486.
Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature, 415(6870): 389–395.