Evaluation of oxygen changes on survival, some stress indices and hematological and immunological factors in Caspian Sea salmon (Salmo trutta caspius)

Document Type : Research Paper


1 Ph.D. Student in Fisheries, Department of Fisheries, Natural Resources Faculty, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

2 Associate Professor in Department of Fisheries, Natural Resources Faculty, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

3 Associate Professor in Department of Fisheries, Natural Resources Faculty, Lahijan Branch, Islamic Azad University, Lahijan, Iran

4 Assistant Professor in Department of Fisheries, Natural Resources Faculty, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

5 Assistant Professor in Physiology Department, Inland Water Aquaculture Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran


Caspian brown trout (Salmo trutta caspius) is one of the most valuable fishes in the Caspian Sea and has great value due to its marketability, appearance and taste of meat. This study was carried out to determine the effects of oxygen changes on survival, some stress indices and hematological and immunological factors in Caspian Sea salmon (Salmo trutta caspius). 210 fish (50 10g) were randomly selected and placed in tanks with aerator and oxygen capsule. Fish were divided in 3 treatments with 3 replications including treatment hypoxia (2-3 mg/L oxygen), treatment control or normoxia (7-8 mg/L oxygen) and treatment hyperoxia (12-14 mg/L oxygen). Blood sampling were performed for 12 and 24 hours. The results showed that fish had no mortality in the different oxygen treatments. The effect of oxygen showed that there were significant differences in WBC, RBC, hemoglobin, hematocrit, neutrophil, lymphocyte, cortisol, glucose, lactate, lysozyme, total immunoglobulin, IgM, albumin, and total protein (P<0.05). In general, 7-8 mg/L oxygen is the most favorable condition for Caspian brown trout. Because the most appropriate values of factors were observed more in this group, which showed a significant difference with other treatments.


اسماعیلی ساری ع. 1383. هیدروشیمی بنیان آبزی‌پروری. انتشارات اصلانی. 276ص.
اعدلیان ن. 1388. اثر هیپوکسی بر ساختار آبشش ماهی کپور معمولی (Cyprinus carpio). پایان‌نامه کارشناسی ارشد، دانشگاه گیلان. 46ص.
باقرزادهلاکانیف.،ستاری م.، شریفپور ع.، کاظمی ر. وحلاجیان ع. 1395. اثرات سطوح مختلف اکسیژن بر بافت طحال در دو گروه وزنی فیل‌ماهی (Huso huso). نشریه توسعه آبزی‌پروری، 10(2): 30-21.
باقرزادهلاکانیف.،ستاری م.، کاظمی ر.، یزدانیساداتی م.ع.، پوردهقانی م. و عشوریق. 1394. اثرات هیپوکسی، نورموکسی و هایپراکسی بر فاکتورهای هماتولوژی و پارامترهای بیوشیمیایی خون دو گروه وزنی از فیل‌ماهی (Huso huso) پرورشی. اقیانوس‌شناسی، 6(22): 68-59.
باقرزادهلاکانیف.،ستاری م.، یزدانیساداتی م.ع.، کاظمی ر. وجعفرزادها. 1391. اثرات سطوح مختلف اکسیژن بر رشد و ترکیب عضله در دو گروه وزنی از فیل‌ماهیان (Huso huso) پرورشی. مجله علوم و فنون دریایی، 11(9): 24-13.
پورغلام ی. 1392. اثرات سطوح مختلف ویتامین C روی تنش‌های اکسیژنی و دمایی بچه تاس‌ماهی سیبری (Acipenser baerii). پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی. 118ص.
تکریمی س.م. 1386. اکولوژی دریایی. انتشارات موسسه آموزش عالی علمی-کاربردی. 209ص.
خورشیدی ش،. خارا ح و احمدنژاد م. 1396. اثرات تنش‌های دمایی روی برخی فاکتورهای خونی، شاخص‌های استرس و هیستوپاتولوژیک آبشش قزل‌آلای رنگین‌کمان. مجله محیط زیست جانوری، 9(3): 232-219.
شاهسونی د.، مهریم. و تقوایی ­مقدم ا. 1386. تعیین مقادیر برخی از آنزیم‌های سرم خون فیل‌­ماهی. مجله تحقیقات دامپزشکی، 62(3): 129-127.
کاظمی ر.، پوردهقانی م.، یوسفی جوردهی ا.، یارمحمدی م. و نصری تجن م. 1389. فیزیولوژی دستگاه گردش خون آبزیان و فنون کاربردی خون‌شناسی ماهیان. انتشارات بازرگان. 194ص.
Acerete L., Balasch J.C., Espinosa E., Josa A. and Tort L. 2004. Physiological responses in Eurasian perch (Perca fluviayilis) subjected to stress by transport and handling. Aquaculture, 237: 167–178.
Amar E.C., Kiron V., Satoh S., Okamoto N. and Watanabe T. 2000. Effects of dietary b-carotene on the immune response of rainbow trout (Oncorhynchus mykiss). Fisheries Sciences, 66: 1068–1075.
Bagherzadeh Lakani F., Sattari M., Sharifpour I. and Kazemi R. 2013. Effect of hypoxia, normoxia and hyperoxia conditions on gill histopathology in two weight groups of beluga (Huso huso). Caspian Journal of Environmental Sciences, 11(1): 77–84.
Bani A. and Haghi-Vayghan A. 2011. Temporal variations in haematological and biochemical indices of the Caspian kutum, Rutilus frisii kutum. Ichthyological Research, 58: 126–133.
Bell J.G. and Sargent J.R. 2003. Arachidonic acid in aquaculture feeds: Current status and future opportunities. Aquaculture, 218: 491–499.
Boutilier R.G., Dobson G., Hoeger U. and Randall J. 1987. Acute exposure to graded levels of hypoxia in rainbow trout (Salmo gairdneri): Metabolic and respiratory adaptations. Respiratory Physiology, 71: 69–82.
Boyd C.E. 1982. Water quality management for pond fish culture. Elsevier Scientific Publishing Company, Netherlands. 318P.
Brauner C.J., Seidelin M., Madsen S.S. and Jensen F.B. 2000. Effects of freshwater hyperoxia and hypercapnia and their influences on subsequent seawater transfer in Atlantic salmon (Salmo salar) smolts. Canadian Journal of Fisheries and Aquatic Sciences, 57: 2054–2064.
Brett J.R. and Groves T.D.D. 1979. Physiological energetics. P: 279–352. In: Hoar W.S., Randall D.J. and Brett J.R. (Eds.). Fish Physiology. Academic Press, USA.
Buentello J.A., Gatlin D.M. and Neill W.H. 2000. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture, 182: 339–352.
Ellis A.E. 1977. The leucocytes of fish: A review. Journal of Fish Biology, 11: 453–491.
Fraser J., Vieira De Mello L., Ward D., Rees H.H., Williams D.R., Fang Y., Brass A., Gracey A.Y. and Cossins A.R. 2006. Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proceedings of the National Academy of Sciences, 103(8): 2977–2981.
Habibi E., Kalbassi M.R., Hosseini S.J. and Qasemi S.A. 2013. Feasibility of identification of fall and spring migrating Caspian trout (Salmo trutta caspius) by using AFLP molecular marker. Turkish Journal of Fisheries and Aquatic Sciences, 13: 241–248.
Hajirezaee S., Mojazi Amiri B. and Mirvaghefi A.R. 2010. Relationships between the chemical properties of seminal fluid and the sperm motility characteristics of Caspian brown trout, Salmo trutta caspius (a critically endangered salmonid fish). Research Journal of Fisheries and Hydrobiology, 5(1): 27–31.
Heisler N. 1993. Acid-base regulation in response to changes of the environment: Characteristics and capacity. P: 207–230. In: Rankin J.C. and Jensen F.B. (Eds.). Fish Ecophysiology. Chapman and Hall, USA.
Henry R.J. 1974. Clinical Chemistry: Principles and Technics. Harper and Row, USA. 1629P.
Jobling M. 1995. Environmental biology of fishes. Chapman and Hall Fish and Fisheries Series, 16: 1–35.
Klontz G.W. 1994. Fish hematology. P: 121–132. In: Stolen J.S., Fletcher T.C., Rowley A.F., Klikoff T.C., Kaattari S.L. and Smith S.A. (Eds.). Techniques in Fish Immunology. SOS Publications, USA.
Kubokawa K., Watanabe T., Yoshioka M. and Iwata M. 1999. Effects of acute stress on plasma cortisol, sex steroid hormone and glucose levels in male and female sockeye salmon during the breeding season. Aquaculture, 172: 335–349.
Lee C.S. and Donaldson E.M. 2001. General discussion on “Reproductive biotechnology in finfish aquaculture. Aquaculture, 197(1): 303–320.
Li P., Lewis D.H. and Gatlin D.M. 2004. Dietary oligonucleotides from yeast RNA influence immune responses and resistance of hybrid striped bass (Morone chrysops × Morone saxatilis) to Streptococcus iniae infection. Fish and Shellfish Immunology, 16(5): 561–569.
Malheiro D.B.T. 2015. Effects of oxygen availability on hematological parameters, immune status, gill histomorphology and gene expression of Senegalese sole (Solea senegalensis): The role of acute hyperoxia. M.Sc. Thesis, Universidade do Porto, Portugal. 51P.
Mariana S. and Badr G. 2019. Impact of heat stress on the immune response of fishes. Survey in Fisheries Sciences, 5(2): 149–159.
Matey V., Richards J.G., Wang Y., Wood C.M., Rogers J., Davies R., Murray B.W., Chen X.Q., Du J. and Brauner C.J. 2008. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. The Journal of Experimental Biology, 211: 1063–1074.
Maxime V., Nonnotte G., Peyraud C., Williot P. and Truchot J.P. 1995. Circulatory and respiratory effects of a hypoxic stress in the Siberian sturgeon. Respiration Physiology, 100: 203–212.
Mohagheghi Samarin A., Mojazi Amiri B., Bahre Kazemi M., Soltani M., Matinfar A., Abtahi B. and Pusti I. 2010. Biochemical and histological studies of over-ripened oocyte in the Caspian brown trout (Salmo trutta caspius) to determine biomarkers for egg quality. Iranian Journal of Fisheries Sciences, 9(1): 33–48.
Panigrahi A., Kiron V., Puangkaew J., Kobayashi T., Statoh S. and Sugita H. 2005. The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout (Oncorhynchus mykiss). Aquaculture, 243: 241–254.
Parker T.M. 2013. Effects of the interaction of environmental factors (hypoxia and ammonia) on fish. M.Sc. Thesis, The Ohio State University, USA. 72P.
Patriche T., Patriche N., Bocioc E. and Coada M.T. 2011. Serum biochemical parameters of farmed carp (Cyprinus carpio). Aquaculture, Aquarium, Conservation and Legislation- International Journal of the Bioflux Society, 4: 137–140.
Radu D., Oprea L., Bucur C., Costache M. and Oprea D. 2009. Characteristics of haematological parameters for carp culture and Koi (Cyprinus carpio Linneaus, 1758) reared in an intensive system. Journal of Animal Science and Biotechnology, 66: 1–2.
Rotllant J., Balm P.H.M., Perez-Sanchez J., Wendelaar-Bonga S.E. and Tort L. 2001. Pituitary and interrenal function in gilthead sea bream (Sparus aurata L., Teleostei) after handling and confinement stress. General and Comparative Endocrinology, 121: 333–342.
Stoskopf M.K. 1993. Fish Medicine. Saunders Company, Philadelphia. 882P.
Swift D.J. 1982. Changes in selected blood component concentrations of rainbow trout, Salmo gairdneri, following the blocking of the cortisol stress response with betamethasone and subsequent exposure to phenol or hypoxia. Journal of Fish Biology, 21: 269–277.
Tavares-Dias M. and Moraes F.R. 2010. Biochemical parameters for Piaractus mesopotamicus, Colossoma macropomum (Characidae) and hybrid Tambacu (P. mesopotamicus × C. macropomum). Ciencia Animal Brasileira Goiania, 11(2): 363–368.
Terova G., Rimoldi S., Cora S., Bernardini G., Gornati R. and Saroglia M. 2008. Acute and chronic hypoxia affects HIF-1α mRNA levels in Sea bass (Dicentrarchus labrax). Aquaculture, 279: 150–159.
Timmons M.B., Ebeling J.M., Wheaton F.W., Summerfelt S.T. and Vinci B.J. 2002. Recirculating Aquaculture Systems. Cayuga Aqua Ventures Llc, USA. 769P.
Van Raaij M.T.M., Van Den Thillart G., Vianen G.J., Pit D.S.S., Balm P.H.M. and Steffens A.B. 1996. Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss) during stepwise decreasing oxygen levels. Netherlands Journal of Zoology, 51: 33–50.
Vosylien M.Z. 1996. Hmatological parameters of Rainbow trout (Oncorhynchus mykiss) during short-term exposure to copper. Ecology, 3: 12–18.
Weber R.E. and Lykkeboe G. 1978. Respiratory adaptations in carp blood, Influence of hypoxia, red cell organic phosphatase, divalent cation and CO2 on hemoglobinoxygen affinity. Journal of Comparative Physiology, 128: 127–137.
Wotton I. and Freeman H. 1974. Microanalysis in Medicinal Biochemical. Churchill Livingstone, UK. 1982P.
Zaghloul K.H., Hanna M.I. and Zaki M.M. 2007. Assessment and control of nitrite toxicity in Clarias gariepinus. Egyptian Journal of Aquatic Biology and Fisheries, 11(3): 1047–1068.