Evaluation of essential oil from Zataria multiflora as natural antibiofouling agents in epoxy paint for marine application

Document Type : Research Paper


1 Ph.D. Student in Fisheries, Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

2 Professor in Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

3 Associate Professor in Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

4 Associate Professor in Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran


Regarding the negative impacts of using toxic antifouling paints to solve the problem of biofouling, the development of non-toxic paints from natural products and their application in marine industries has gain importance. In the present study, the antifouling properties of Zataria multiflora essential oil in antifouling epoxy paint were investigated. Antibiofouling activity of essential oil was proved by antibacterial, antimicroalgal, antibarnacel and antiartemia activities. The minimum inhibitory concentration was 0.125 and 0.250 mg/L against two bacteria Staphylococcus aureus and Escherichia coli, respectively. According to antimicroalgal adherence assay, essential oil had inhibited the average specific growth rate of Isochrysis galbana with effective concentration of 52.186±17.67mg/L and LC50 was 8.720±1.28 and 35.210±2.37mg/L against antibarnacel and antiartemia, respectively. The essential oil was added to epoxy paint and coated on the fiberglass panel exposed to seawater for three months. At the end of the first and second months, the coated panels containing 3% essential oil had the lowest weight (78.81±22.2 and 178.44±6.58 g, respectively) and lowest fouling cover percentage (63.52±1.92% and 92.05±3.34%, respectively) (P<0.05). Results showed that the effectiveness of antifouling activity of Z. multiflora essential oil depends on the amount of essential oil in the paint and its wash rate in seawater.


زرگری ع. 1371. گیاهان دارویی. انتشارات دانشگاه تهران. 57ص.
بارانی م.، یوسفزادی م. و هادیان ج. 1392. استفاده از Artemia salina به عنوان مدل، جهت تعیین اثرات سیتوتوکسیک اسانس‌های گیاهی. همایش ملی علوم جانوران آبزی، دانشگاه گیلان، رشت. ص:846-849.
شریف روحانی م.، حقیقی م. و عصاییان ح. 1390.غلظت نیمه کشنده اسانس آویشن شیرازی  (Zataria  multiflora)  در  بچه  ماهی قزل‌آلای رنگین‌کمان پرورشی (Oncorhynchus mykiss). مجله علمی شیلات ایران، 20(2): 96-89.
شهسواری ن.، برزگر م.، سحری م. ع. 1387. بررسی اثر آنتی‌اکسیدانی اسانس‌های آویشن شیرازی (Zataria multiflora) و زیره کوهی (Bunium persicum) در روغن سویا. هجدهمین کنگره ملی علوم و صنایع غذایی، پژوهشکده علوم و صنایع غذایی خراسان رضوی، مشهد. ص: 5-1.
مشجور س.، اذان ز.، کاظمیان ا. و بی‌نیاز م.، 1394. ارزیابی اثرات سمیت سلولی عصاره‌های گیاهان دارویی آویشن و مرزه بر ناپلئوس Artemia salina. مجله بوم‌شناسی آبزیان، 5(3): 150-145.
Amanlou M., Dadkhah F., Salehnia A., Farsam H. and Dehpour A.R. 2005. An anti-inflammatory and anti-nociceptive effects of hydroalcoholic extract of Satureja khuzistanica Jamzad extract. Journal of Pharmacy and Pharmaceutical Sciences, 8(1): 102–106.
Ananda K.S. and Sasikumar A. 2014. Studies on novel silicone/phosphorus/sulphur containing nano-hybrid epoxy anticorrosive and antifouling coatings. Progress in Organic Coatings, 68(3): 189–200.
Banerjee  S.,  Hew  W.E.,  Khatoon  H., Shariff M. and Yusoff F.M. 2011. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. African Journal of Biotechnology, 10(8): 1375–1383.
Beveridge M. 2004. Cage Aquaculture. Blackwell Publishing Ltd., UK. 368P.
Bond P.R., Brown M.T., Moate R.M., Gledhill M., Hill S.J. and Nimmo M. 1999. Arrested development in Fucus spiralis (Phaeophyceae) germlings exposed to copper. European Journal of Phycology, 34: 513–521.
Braithwaite R.A., Carrascosa M.C.C. and McEvoy L.A. 2007. Biofouling of salmon cage netting and the efficacy of a typical copper-based antifoulant. Aquaculture, 262: 219–226.
CLSI. 2017. Performance standards for antimicrobial susceptibility testing (M100). Clinical and Laboratory Standards Institute, USA. 282P.
Costello M.J., Fretwell K. and Read P. 1993. Toxicity of sewage sludge to Crangon crangon and Artemia salina, with reference to other marine Crustacea. Aquatic Living Resources, 6(4): 351–356.
Cuili J., Jingjing Q., Li M., Ke F. and Xiao Jian Z. 2014.  Antifouling activities of anti-histamine compounds against the barnacle Amphibalanus (=Balanus) amphitrite. Journal of Experimental Marine Biology and Ecology, 452: 47–53.
Dahms H.U. and Dobretsov S. 2017. Antifouling compounds from marine macroalgae. Marine Drugs, 15(9): 1–16 (265).
Dambolena J.S., Lopez A., Jose M. and Zygadlo J.A. 2012. Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure-property-activity relationship study. Food Control, 28(1): 163–170.
Ebrahimzadeh H., Yamini Y., Sefidkon F., Chaloosi M. and Pourmortazavi S.M. 2003. Chemical composition of the essential oil and supercritical CO2 extracts of Zataria multiflora Bioss. Food Chemistry, 83: 357–361.
Edwards C.D., Pawluk K.A. and Cross S.F. 2015. The effectiveness of several commercial antifouling patches containing tetracycline hydrochloride and carvacrol for treatment of local mouth bacterial infections and candidiasis. Aquaculture Research, 46: 2225–2235.
Fitridge I., Dempster T., Guenther J. and De Nys R.  2012. The impact and control of biofouling in marine aquaculture: A review. Biofouling, 28: 649–669.
Helander I.M., Alakomi H.L., Latva-Kala K., Mattila-Sandholm T., Pol I. and Smid E.J. 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agriculture and Food Chemistry, 46(9): 3590–3595.
Hisem D., Hrouzek P., Tomek P., Tomsickova J., Zapomelova E., Skacelova K., Lukesova A. and Kopecky J. 2011. Cyanobacterial cytotoxicity versus toxicity to brine shrimp Artemia salina. Toxicon, 57(1): 76–83.
Hodson S.L. and Burke C.M. 1994. Microfouling of salmon- cage netting: A preliminary investigation. Biofouling, 8: 93–105.
Joshi M., Mukherjee A., Misra1 S.C. and Ramesh U.S. 2013. Natural biocides in antifoulingpaints. Technical Innovation in Shipbuilding, 12(13): 1–11.
Kim J.M., Marshall M.R., Cornell J.A., Preston J.F. and Well C.l. 1995. Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and fish cube. Journal of Food Science, 60(6): 1346–1368.
Lim C.Y., Yoo Y.H., Sidhartan M., Ma C.W., Bang I.C., Kim J.M., Lee K.S., Park N.S. and Shin H.W. 2006. Effects of copper (I) oxide on growth and biochemical compositions of two marine microalgae. Journal of Environmental Biology, 27(3): 461–466.
Liu H., Chen S.Y., Guo J.Y., Su P., Qiu Y.K., Ke C.H. and Feng D.Q. 2018. Effective natural antifouling compounds from the plant Nerium oleander and testing. International Biodeterioration and Biodegradation, 127: 170–177.
Maki J.C. and Mitchell R. 2002. Biofouling in the marine environment. P: 610–619. In: Bitton G. (Ed.). Encyclopedia of Environmental Microbiology. John Wiley and Sons, USA.
Mazooji A., Salimpur F., Danaei M., Akhoondi Darzikolaei S. and Shirmohammadi K. 2012. Comparative study of the essential oil chemical composition of Thymus kotschyanus Boiss. and Hohen. var kotschyanus from Iran. Annals of Biological Research, 3(3): 1443–1451.
Mohagheghzadeh A., Shams-Ardekani M. and Ghannadi A. 2000. Volatile constituents of allus and flower-bearing tops of Zataria multiflora Bioss (Lamiaceae), Flavour Fragr Journal, 15: 373–376.
Mongelli E., Martino V. and Coussio J. 1996. Screening of Argentine medicinal plants using the brine shrimp microwell cytotoxicity assay. International Journal of Pharmacognosy, 34: 249–54.
Munari C. and Mistri M. 2007. Effect of copper on the scope for growth of clams (Tapes philippinarum) from a farming area in the Northern Adriatic Sea. Marine Environmental Research, 64: 347–357.
Najafpour Navaie M. and Mirza M. 2014. Chemical composition of the essence extracted from the flowered shoot of Zataria multiflora Bioss. in four different provinces. Eco-phytochemical Journal of Medicinal Plants, 2(4): 43–49.
Noor Idora M.S., Ferry M., Wan Nik W.B. and Jasnizat S. 2015. Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Organic Coatings, 81: 125–131.
Obaidat R.M., Bader A., Al-Rajab W., Abu Sheikha G. and Obaidat A.A. 2011. Preparation of mucoadhesive oral patches containing tetracycline hydrochloride and carvacrol for treatment of local mouth bacterial infections and candidiasis. Scientia Pharmaceutica, 79(1): 197–212.
OECD. 2011. Freshwater alga and cyanobacteria, growth inhibition test, Test No. 201. OECD Guidelines for the Testing of Chemicals. Organization for Economic Cooperation and Development, France. 25P.
Osakabe N., Yasuda A., Natsume M. and Yoshikawa T. 2004. Rosmarinic acid inhibits epidermal inflammatory responses: Anticarcinogenic effect of Perilla frutescens extractin the murine two stage skin model. Carcinogenesis, 25: 549–557.
Perez M., Blustein G., Garcia M., Del Amo B. and Stupak M. 2006. Cupric tannate: A low copper content antifouling pigment. Progress in Organic Coatings Journal, 55: 311–315.
Perez M., Garcia M., Sanchez M., Stupak M., Mazzuca M., Palermo J.A. and Blustein G. 2014. Effect of secochiliolide acid isolated from the Patagonian shrub Nardophyllum bryoides as active component in antifouling paints. International Biodeterioration and Biodegradation, 89: 37–44.
Piazza V., Roussis V., Garaventa F., Greco G., Smyrniotopoulos V., Vagias C. and Faimali M. 2011. Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. Marine Biotechnology, 13: 764–772.
Price C.S. and Morris Jr J.A. 2013. Marine cage culture and the environment: Twenty-first century science informing a sustainable industry. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum. National Centers for Coastal Ocean Science 164, USA. 158P.
Qian P.Y., Lau S.C., Dahms H.U., Dobretsov S. and Harder T. 2007. Marine biofilms as mediators of colonization by marine macroorganisms: Implications for antifouling and aquaculture, Journal of Biotechnology, 9(4): 399–410.
Rasband W.S. 2011. ImageJ. US. National Institutes of Health, Bethesda, USA. From http://rsb. info.nih.gov/ij/.
Schultz M.P., Bendick J.A., Holm E.R. and Hertel W.M. 2011. Economic impact of biofouling on a naval ship. Biofouling, 27: 87–98.
Shafiee A. and Javidnia K. 1997. Composition of essential oil of Zataria multiflora. Planta Medicine, 63: 371–372.
Silva T.M., Nascimento R.J., Batista M.B., Agra M.F. and Camara C.A. 2007. Brine shrimp bioassay of some species of solanum from northeastern Brazil. Revista Brasileira de Farmacogn, 17(21): 35–38.
Suresh M., Iyapparaj P. and Anantharaman P. 2016. Antifouling activity of lipidic metabolites derived from Padina tetrastromatica. Applied Biochemistry and Biotechnology, 179(5): 805–818.
Thomas K.V. and Brooks S. 2010. The environmental fate and effects of antifouling paint biocides. Biofouling, 26: 73– 88.
Trombetta D., Castelli F., Sarpietro M.G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G. and Bisignano G. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemotherapy, 49(6): 2474–2478.
Ultee A., Bennik M.H.J. and Moezelaar R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68: 1561–1568.
Vardar-Unlu G., Yagmuroglu A. and Unlu M. 2010. Evaluation of in vitro activity of carvacrol against Candida albicans strains. Natural Product Research, 24(12): 1189–1193.
WHOI (Woods Hole Oceanographic Institution). 1952. Marine fouling and its prevention. The Naval Institute Press, USA. 118P.
Willemsen P.R. 2005. Biofouling in European aquaculture: Is there an easy solution? European Aquaculture Society Special Publication, 35: 82–87.
Yang C., Sun W., Liu S. and Xia C. 2015. Comparative effects of indole derivatives as antifouling agents on the growth of two marine diatom species. Chemistry and Ecology, 31(4): 299–307.
Yousefzadi M., Riahi-Madvar A., Hadian J., Rezaee F., Rafiee R. and Biniaz M. 2013. Toxicity of essential oil of Satureja khuzistanica: In vitro cytotoxicity and anti-microbial activity. Immunotoxicology, 11: 50–55.
Zarezadeh A., Mirhossaini A. and Arabzadeh M. 2013. Comparison on quality and quantityin essential oils of six species of Thymus L. in Yazd province. Eco-phytochemical Journal of Medicinal Plants, 1(2): 39–49.