Investigating verification of sturgeon caviar in cosmetic products using barcoding method of mitochondrial genes

Document Type : Research Paper

Authors

1 Assistant Professor in Department of Genetics and Biotechnology, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

2 Scientific Member in Department of Genetics and Biotechnology, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

Abstract

In order to evaluate the presence or absence of DNA in cream and caviar extract samples, four samples of cream and one sample of caviar extract were evaluated for DNA concentration using Nanodrop and agarose gel analysis. The amount of DNA extracted in the samples of cream and caviar extract based on Nanodrop measurement was equal to 5 to 20 ng/µL, but it was not possible to examine these samples on agarose gel due to the little concentration. In order to test for the presence or absence of caviar extract and cream in the cosmetic cream, the mitochondrial DNA tracing method of sturgeon species was used by amplifying important fragments in global barcoding tests such as cytochrome oxidase I (COI) and cytochrome b (Cyt b). Amplified fragments in cream and caviar extract were analyzed by sequencing. The fragment length in COI gene was 650 nucleotides and in Cyt b was 1200 nucleotides. The final results showed that the cream and extract samples contain sturgeon DNA. The sturgeon species used to make the cream was closer to the Siberian sturgeon species (Acipenser baerii).

Keywords


بهمنی م. 1385. صنعت خاویار ایران. آموزش کشاورزی وابسته به دفتر خدمات تکنولوژی آموزشی وزارت جهاد کشاورزی، موج سبز. 120ص.
کلنگی میاندره ح.، فرحمند ح.، عقیلینژاد س.م. و اکبرزاده آ. 1391. معرفی ژن سیتوکروم b به عنوان ژن مناسب جهت تشخیص هویت خاویار و ماهیان خاویاری دریای خزر. فصلنامه بهره‌برداری و پرورش آبزیان، 1(2): 62-51.
مرادی ی. 1387. روش‌های فرآوری و کنترل کیفی خاویار. موسسه آموزش عالی علمی کاربردی جهاد کشاورزی. 132ص.
Bergman P., Schumer G., Blankenship S. and Campbell E. 2016. Detection of adult green sturgeon using environmental DNA analysis. PLoS One, 11(4): 1–8 (e0153500).
Bronzi P. and Rosenthal H. 2014. Present and future sturgeon and caviar production and marketing: A global market overview. Journal of Applied Ichthyology, 30: 1536–1546.
Bronzi P., Rosenthal H. and Gessner J. 2011. Global sturgeon aquaculture production: An overview. Journal of Applied Ichthyology, 27: 169–175.
Ciftci Y., Eroglu O. and Firidin S. 2013. Mitochondrial cytochrome b sequence variation in three sturgeon species (A. stellatus Pallas, 1771, A. gueldenstaedtii Brandt, 1833, H. huso Linnaeus, 1758) from the Black Sea Coasts of Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 13: 291–303.
Dasmahapatra K.K. and Mallet J. 2006. DNA barcodes: Recent successes and future prospects. Heredity, 97(4): 254–255.
Dawnay N., Ogden R., McEwing R., Carvalho G.R. and Thorpe R.S. 2007. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Science International, 173: 1–6.
Hebert P.D.N., Cywinska A., Ball S.L. and DeWaard J.R. 2003a. Biological identification through DNA barcodes. Proceedings of the Royal Society of London B, 270: 313–321.
Hebert P.D.N., Ratnasingham S. and DeWaard J.R. 2003b. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B, 270: S96–S99.
Kumar S., Stecher G., Li M., Knyaz C. and Koichiro Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.
Ludwig A., Debus L. and Jenneckens I. 2002. A molecular approach to control theinternational trade in blackcaviar. Hydrobiology, 87(5‐6): 661–674.
Ludwig A., Lieckfeldt D. and Jahrl J. 2015. Mislabelled and counterfeit sturgeon caviar from Bulgaria and Romania. Journal of Applied Ichthyology, 31(4): 587–591.
Marko P.B., Lee S.C., Rice A.M., Gramling J.M., Fitzhenry T.M., McAlister J.S., Harper G.R. and Moran A.L. 2004. Mislabeling of a depleted reef fish. Nature, 430: 309–310.
Pappalardo A.M. and Ferrito V. 2019. A COIBar-RFLP strategy for the rapid detection of Engraulis encrasicolus in processed anchovy products. Food Control, 57: 385–392.
Pappalardo A.M., Federico C., Sabella G., Saccone S. and Ferrito V. 2015. A COI nonsynonymous mutation as diagnostic tool for intraspecific discrimination in the European anchovy Engraulis encrasicolus (Linnaeus). PLoS ONE 10(11): 1–12 (e0143297).
Popa G.O., Dudu A., Banaduc D., Curtean-Banaduc A., Teodora Barbalata T., Alexandru Burcea A., Florescu L.E., Georgescu S. E. and Costache M. 2017. Use of DNA barcoding in the assignment of commercially valuable fish species from Romania. Aquatic Living Resources, 30, 20: 1–12.
Raymakers C. 2006. CITES, the convention on internationaltradein endangered species of wild Fauna and Flora: Its role in the conservation of Acipenseriformes. Journal of Applied Ichthyology, 22: 53–65.
Waraniak J., Blumstein D.M. and Scribner K.T. 2017. Barcoding PCR primers detect larval lake sturgeon (Acipenser fulvescens) in diets of piscine predators. Conservation Genet Resource, 10: 259–268.
Ward R.D., Zemlak T.S., Innes B.H., Last P.R. and Hebert P.D.N. 2005. DNA barcoding of Australia's fish species. Philosophical Transactions of the Royal Society (B), 360: 1847–1857.
Wolf C., Rentsch J. and Hubner P. 1999. PCR-RFLP analysis of mitochondrial DNA: A reliable method for species identification. Journal of Agricultural and Food Chemistry, 47: 1350–1355.
 Wong E.H.K. and Hanner R.H. 2008. DNA barcoding detects market substitution in North American seafood. Food Research International, 41: 828–837.
Xiao W., Zhang Y. and Liu H. 2001. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Molecular Phylogenetics Evolution, 18: 163–173.