Effect of dietary prebiotic supplement of oyster mushroom powder (Pleurotus ostreatus) on the P450 and Hsp70 genes expression in liver tissue of Nile tilapia (Oreochromis niloticus) in exposure to chlorpyrifos

Document Type : Research Paper


1 Ph.D. Student in Aquatic Ecology, Department of Fisheries and Aquatic Ecology, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Professor in Department of Fisheries and Aquatic Ecology, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Associate Professor in Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Assistant Professor in Offshore Water Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Chabahar, Iran


Increased entry of pesticides such as chlorpyrifos into aquatic ecosystems can cause harmful damage to aquatic animals. The aim of this study was to investigate the effect of dietary supplement of Pleurotus ostreatus mushroom powder on the relative expression of immune-related genes (P450 and Hsp70) in the liver tissue of Nile tilapia (Oreochromis niloticus) in response to chlorpyrifos toxin. In this study, 120 juveniles of Nile tilapia with an average weight of 20±0.4g were divided into four treatments in three replications and fed with diet containing 0 (control), 0.05, 0.1 and 0.2% fungus for 42 days. At the end of the feeding trial, all treatments were exposed to the sub-lethal concentration of chlorpyrifos for 14 days. Liver tissue samples were taken to evaluate the relative expression on the last day of the mushroom feeding period and on the 14th day of exposure to chlorpyrifos. The relative expression of P450 in treatments of 0.2 and 0.1 were significantly increased, but the treatments of 0.05 and 0.1 after exposing to poison was not significantly different from the control group (P>0.05). Expression of Hsp70 gene in treatments fed with dietary supplement before and after exposure to toxin was significantly different (P<0.05). It increased in 0.2 treatment, but it was not significantly different in 0.05 treatment from control (P>0.05). The results of this study indicate the positive effects of Pleurotus ostreatus prebiotic dietary supplements on the relative expression of Hsp70 and P450 genes in Nile tilapia juveniles and its immune system strengthen in the face of contaminants and stressful substances such as chlorpyrifos


جافرنوده ع. 1395. بررسی خواص سینرژیستی برخی اسیدهای آلی با باکتری لاکتوباسیلوس کازئی (Lactobacillus casei) در پرورش بچه ماهیان انگشت قد قزل‌آلای رنگین‌کمان (Oncorhynchus mykiss). رساله دکتری، دانشگاه ارومیه. 150ص.
حسن‌نتاج نیازی ا. ایمانپور م.ر. هدایتی س.ع.ا. 1393. تعیین سمیت کشنده آفت‌کش کلرپیریفوس در ماهی کاراس طلایی (Carassius auratus) و مقایسه میزان سمیت آن با سایر سموم ارگانوفسفره. مجله بهره‌برداری و پرورش آبزیان، 3(4): 12-1.
Aida F.M.N.A., Shuhaimi M., Yazid M. and Maaruf A.G. 2009. Mushroom as a potential source of prebiotics: A review. Trends in Food Science and Technology, 20(11-12): 567–575.
Benedetto A., Brizio P., Squadrone S., Scanzio T., Righetti M., Gasco L., Prearo M.C. and Abete M.C. 2016. Oxidative stress related to chlorpyrifos exposure in rainbow trout: Acute and medium term effects on genetic biomarkers. Pesticide Biochemistry and Physiology, 129: 63–69.
Bricknell I. and Dalmo R.A. 2005. The use of immunostimulants in fish larval aquaculture. Fish and Shellfish Immunology, 19(5): 457–472.
Castano A., Bols N.C., Braunbeck T., Dierick P., Halder M., Isomaa B., Kawahara K., Lee L.E.J., Mthersill C., Part P., Repetto G., Sintes J.R., Rufli H., Smith R. and Eisler R. 1986. Diazinon hazards to fish, wildlife, and invertebrates: A synoptic review. U.S. Fish and Wildlife Service, 85: 1–38.
Dawood M.A., El-Shamaa I.S., Abdel-Razik N.I., Elkomy A.H., Gewaily M.S., Abdo S.E., Soliman A.A., Paray B.A. and Abdelkhalek N. 2020a. The effect of mannanoligosaccharide on the growth performance, histopathology, and the expression of immune and antioxidative related genes in Nile tilapia reared under chlorpyrifos ambient toxicity. Fish and Shellfish Immunology, 103: 421–429.
Dawood M.A., Eweedah N.M., El-Sharawy M.E., Awad S.S., Van Doan H. and Paray B.A. 2020b. Dietary white button mushroom improved the growth, immunity, antioxidative status and resistance against heat stress in Nile tilapia (Oreochromis niloticus). Aquaculture, 523: 1–9 (735229).
Fu Y., Li M., Liu C., Qu J.P., Zhu W.J., Xing H.J. and Li S. 2013. Effect of atrazine and chlorpyrifos exposure on cytochrome P450 contents and enzyme activities in common carp gills. Ecotoxicology and Environmental Safety, 94: 28–36.
Gibson G.R., Probert H.M., Van Loo J., Rastall R.A. and Roberfroid M.B. 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews, 17(2): 259–275.
Hoffman U. and Papendrof T. 2006. Organophosphate poisonings with parathion and dimethoate. Intensive Care Medicine, 32: 464–468.
Hoseinifar S.H., Mirvaghefi A., Merrifield D.L., Amiri B.M., Yelghi S. and Bastami K.D. 2011. The study of some haematological and serum biochemical parameters of juvenile beluga (Huso huso) fed oligofructose. Fish Physiology and Biochemistry, 37(1): 91–96.
Huang G.Y., Ying G.G., Liang Y.Q., Liu S.S. and Liu U.S. 2014. Expression patterns of metallothionein, cytochrome P4501A and vitellogeningenesin western mosquitofish (Gambusia affinis) in response to heavy metals. Ecotoxicology and Environmental Safety, 105: 97–102.
Hyne R.V. and Maher W.A. 2003. Macroinvertebrate biomarkers: Links to toxicosis and changes in populations or communities. Ecotoxicology and Environmental Safety, 54: 366–374.
Ihsan T., Edwin T. and Anggraeni W. 2018. Behavioral responses of Nile tilapia (Oreochromis niloticus) by sublethal exposure to chlorpyrifos: A case study in Twin Lakes of West Sumatra. Environmental Health Engineering and Management Journal, 5(4): 205–210.
Iwama G.K., Vijayan M.M., Forsyth R.B. and Ackerman P.A. 1999. Heat shock proteins and physiological stress in fish. American Zoologist, 39(6): 901–909.
Larionov A., Krause A. and Miller W. 2005. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics, 6(1): 1–16.
Liu T., Zhang Z., Chen D., Wang L., Yao H., Zhao F., Xing H. and Xu S. 2013. Effect of atrazine and chlorpyrifos exposure on heat shock protein response in the brain of common carp (Cyprinus carpio L.). Pesticide Biochemistry and Physiology, 107(2): 277–283.
Livak K.J. and Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. methods, 25(4): 402–408.
Mokhbatly A.A.A., Assar D.H., Ghazy E.W., Elbialy Z., Rizk S.A., Omar A.A. and Dawood M.A. 2020. The protective role of spirulina and β-glucan in African catfish (Clarias gariepinus) against chronic toxicity of chlorpyrifos: Hemato-biochemistry, histopathology, and oxidative stress traits. Environmental Science and Pollution Research, 27(25): 31636–31651.
Norman A. and Henry H. 2015. Hormones. Steroid Hormones: Chemistry, Biosynthesis and Metabolism. Elsevier, USA. 411P.
Ramakers C., Ruijter J.M., Deprez R.H. and Moorman A.F. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66
Ringo E., Olsen R.E., Gifstad T.O., Dalmo R.A., Amlund H., Hemre G.I. and Bakke A.M. 2010. Prebiotics in aquaculture: A review. Aquaculture Nutrition, 16(2): 117–136.
Schrezenmeir J. and De Vres, M. 2001. Probiotics, prebiotics, and synbiotics-approaching a definition. The American Journal of Clinical Nutrition, 73: 361–364.
Sevik S., Aktas M., Dogan H. and Kocak S. 2013. Mushroom drying with solar assisted heat pump system. Energy Conversion and Management, 72: 171–178.
Shayeghi M., Khobdel M., Bagheri F. and Abtai M. 2008. Azynphosmethyl and diazinon residues in Qarasu River and Gorganrood in Golestan Province. Journal of Public Health and Health Research Institute, 6: 75–82.
Softeland L., Holen E. and Olsvik P.A. 2010. Toxicological application of primary hepatocyte cellcultures of Atlantic cod (Gadus morhua), effects of BNF, PCDD and Cd. Comparative Biochemistry and Physiology, 151: 401–411.
Vale J.A. 1998. Toxicokinetic and toxicodynamic aspects of organophosphorus (OP) insecticide poisoning. Toxicology Letters, 102: 649–652.
Van Doan H., Hoseinifar S.H., Dawood M.A., Chitmanat C. and Tayyamath K. 2017. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 70: 87–94.
Van Loo J. and Gibson G. 2006. Inulin-type fructans as prebiotics. P: 57–100. In: Rastall B. and  Gibson G. (Eds.). Prebiotics: Development and Application, Wiley, UK.
Wasser S.P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60(3): 258–274.
Welker T.L., Lim C., Yildirim-Aksoy M. and Klesius P.H. 2011. Effects of dietary supplementation of a purified nucleotide mixture on immune function and disease and stress resistance in channel catfish, Ictalurus punctatus. Aquaculture Research, 42: 1878–1889.
Xing H., Li S., Wang X., Gao X., Xu S. and Wang X. 2013. Effects of atrazine and chlorpyrifos on the mRNA levels of HSP70 and HSC70 in the liver, brain, kidney and gill of common carp (Cyprinus carpio L.). Chemosphere, 90(3): 910–916.
Xing H., Li S., Wang Z., Gao X., Xu S. and Wang X. 2012. Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere, 88(4): 377–383.
Xing H., Zhang Z., Yao H., Liu T., Wang L., Xu S. and Li S. 2014. Effects of atrazine and chlorpyrifos on cytochrome P450 in common carp liver. Chemosphere, 104: 244–250.
Yousefi S. and Hoseinifar S.H. 2018. Protective effects of prebiotic in zebrafish, Danio rerio, under experimental exposure to Chlorpyrifos. International Journal of Aquatic Biology, 6(2): 49–54.