Influence of metal oxide nanoparticles on the cell wall structure of Nannochloropsis oculata

Document Type : Research Paper

Authors

1 2- Ph.D. in Plant Physiology, Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

2 Professor in Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

Abstract

The algal cell wall is the primary site for interaction with nanoparticles and creates a barrier against the entry of nanoparticles into its cell. Therefore, the effect of zinc oxide (ZnO), copper (II) oxide (CuO) and iron (III) oxide (Fe2O3) nanoparticles was investigated on the cell wall structure of Nannochloropsis oculata. Calculation of EC50 using microalgae cell count showed that the order of nanoparticles toxicity in N. oculate was CuO>ZnO>Fe2O3. The interaction of ZnO, CuO and Fe2O3 nanoparticles with microalgae cell wall was proved in FTIR analysis. The highest interaction of the studied nanoparticles was with carbonyl (C=O), methoxy (C-O) and methyl (C-H) functional groups of N. oculata cell wall. On the other hand, transmission electron microscopy (TEM) images showed that ZnO and CuO nanoparticles caused the shrinkage of cell wall. The accumulation of these nanoparticles was observed on the surface of the cell wall. Accumulation of nanoparticles and shrinkage of the cell wall could be the possible reason for the higher toxicity of CuO and ZnO nanoparticles than Fe2O3 nanoparticles in N. oculata.

Keywords


نعمتبخش ح.، طلائی خوزانی ا. و احمدوند ف. 1394. مروری بر کاربرد نانوفناوری در محیط زیست. چهارمین همایش ملی فناوری نانو: از تئوری تا کاربرد. موسسه آموزش عالی جامی اصفهان. ص: 20-1.
Aruoja V., Dubourguier H.C., Kasemets K. and Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokircehneriella subcapitata. Science of the Total Environment, 407: 1461–1468.
Bao S., Lu Q., Fang T., Dai H. and Zhang C. 2015. Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Applied and Environmental Microbiology, 81(23): 8098–8107.
Chang Y.N., Zhang M., Xia L., Zhang J. and Xing G. 2012. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5(12): 2850–2871.
Chen P., Powell B.A., Mortimer M. and Ke P.C. 2012. Adaptive interactions between zinc oxide nanoparticles and Chlorella Sp. Environmental Science and Technology, 46: 12178–12185.
Dash A., Singh A.P., Chaudhary B.R., Singh S.K. and Dash D. 2012. Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Letters, 4(3): 158–165.
Fazelian N., Movafeghi A., Yousefzadi M. and Rahimzadeh M. 2019. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research, 26: 17499–17511.
Fazelian N., Yousefzadi M. and Movafeghi A. 2020. Algal response to metal oxide nanoparticles: Analysis of growth, protein content, and fatty acid composition. Bioenery Research, 13(2): 1–11.
Guillard R.I. and Ryther J.H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Canadian Journal of Microbioloy, 8: 229–239.
Kadar E., Rooks P., Lakey C. and White D.A. 2012. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Science of the Total Environment, 439: 8–17.
Lubick N. 2008. Nanosilver toxicity: Ions, nanoparticies or both. Environmental Science and Technology, 42(23): 8617–8617.
Mohammed Sadiq I., Dalai S., Chandrasekaran N. and Mukherjee A. 2011. Ecotoxicity sudy of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 74: 1180–1187.
Nations S., Wages M., Canas J.E., Maul J., Theodorakis C. and Cobb G.P. 2011. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere, 83: 1053–1061.
OECD. 1984. Alga, growth inhibition test. OECD Guideline for Testing of Chemicals. OECD, France. P: 1–14.
Osmond  M.J. and  McCall M.J.  2010. Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology, 4: 15–41.
Pendashteh H., Shariati F., Keshavarz A. and Ramzanpour A. 2013. Toxicity of ZnO nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus algae species. World Journal of Fish and Marine Scienc, 5(5): 563–570.
Phukan M.M., Chuia R.S., Konwar B.K. and Kataki R. 2011. Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88: 3307–3312.
Roy I., Ochulchansky T.Y., Pudavar H.E., Bergey E.J., Oseroff A.R., Morgan J., Dougherty T.H. and Prasad P.N. 2003. Ceramic-based nanoparticles entrapping waterinsoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 125: 7860–7865.
Sheehan J., Dunahay T., Benemann J. and Roessler P.G. 1998. A Look back at the US department of energy’s aquatic species program-biodiesel from algae, close out report TP-580-24190. US Department of Energy’s Office of Fuels Development. Golden, CO: National Renewable Energy Laboratory, USA. 328P.
Singh N., Jenkins G.J., Asadi R. and Doak S.H. 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Review, 1: 1–15.
Sukarni S., Hamidi N., Yanuhar U. and Wardana I.N.G. 2014. Thermogravimetric kinetic analysis of Nannochloropsis oculata combusion in air atmosphere. Frontiers in Energy, 9: 125–133.
Suman T.Y., Radhika Rajasree S.R. and Kirubagaran R. 2015. Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113: 23–30.
Wang Y., Zhu X., Lao Y., Lv X., Tao Y., Huang B., Wang J., Zhou J. and Cai Z. 2016. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Science of the Total Environment, 565: 818–826.