Effects of interaction between nitrite and different salinities on some blood, immunity, and stress indices in juveniles of stellate (Acipenser stellatus)

Document Type : Research Paper


1 Ph.D. in Fisheries, Fisheries Department, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2 Associate Professor in Fisheries Department, Lahijan Branch, Islamic Azad University, Lahijan, Iran

3 Assistant Professor in Fisheries Department, Lahijan Branch, Islamic Azad University, Lahijan, Iran

4 Assistant Professor in International Sturgeon Research Institute of the Caspian Sea, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

5 Assistant Professor in National Inland Water Aquaculture Institute, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran


This study aimed to investigate the effects of interaction between nitrite and different salinities on blood, immunity, and stress parameters in juveniles of stellate (Acipenser stellatus) in two stages. In the first stage, the lethal concentration (LC50 96h) of nitrite in different salinities (0, 4, 8, and 12g/L) to juveniles of stellate was determined. In the second stage, 240 juveniles of stellate (with a mean weight and length of 15.23±2.17g and 17±1.96cm) were exposed to half (50%) of LC50 96h (37.56, 46.77, 120.80, and 176.579mg/L) under the same salinities for 4 days (8 treatments, triplicate). The results showed that the highest mean of white blood cells and neutrophils was in Treatment 7, the highest mean of red blood cells, hemoglobin, MCV and hematocrit was related to treatment 5 and the highest mean of eosinophil belonged to Treatment 8 (P<0.05). Moreover, the highest IgM and total immunoglobulin, lysozyme, cortisol and glucose, and lactate was found in treatments 8, 7, 4, and 3, respectively (P<0.05). The increased nitrite concentration in subjects exposed to salinity plus half of the LC50 96h of nitrite significantly increased the tolerance and immunity parameters and reduced the stress level of subjects. This indicates that salinity could reduce the toxicity of nitrite to subjects. Blood indices also considerably changed in subjects exposed to the same conditions. It can be hence concluded that saline or brackish water (mixed with freshwater, 0 to 12g/L) plus half of the LC50 96h of nitrite is suitable for the culture of stellate juveniles.


آذری تاکامی ق. 1397. تکثیر و پرورش تاس‌ماهیان (ماهیان خاویاری). انتشارات دانشگاه تهران. 424ص.
سقا ح. ر. و سروشنیا م. 1382. کتاب جامع تجهیزات فرآورده­های آزمایشگاهی. انتشارات کتاب میر. 2687 ص.
سلطانی م. 1387. ایمنی­شناسی ماهیان و سخت‌پوستان. موسسه انتشارات و چاپ دانشگاه تهران. 264ص.
قلی‌پور س.، خارا ح. و پژند ذ. 1395. بررسی (LC50 96h) و ضایعات هیستوپاتولوژیکی نیتریت روی بافت‌های آبشش، کبد و کلیه تاس‌ماهی ازون برون (Acipenser stellatus). فصلنامه علمی پژوهشی فیزیولوژی و تکوین جانوری، 11(1): 12-1.
کاظمی ر.، یوسفی جوردهی ا.، پوردهقانی م.، حلاجیان ع.، شناور ماسوله ع.، جلیل‌پور ج. و یارمحمدی م. 1391. بررسی مقایسه­ای شاخص­های خونی مولدین وحشی تاسماهی ایرانی (Acipenser persicus). مجله بهره‌برداری و پرورش آبزیان، 1(3): 44-29.
کیوان ا. 1373. گزارش ده گانه فنی- کاربردی به برادران دکتر رسول لاهیجانیان مدیریت عامل شیلات و معاونت محترم وزارت جهاد سازندگی ایران از دومین سمپوزیوم بین المللی ماهیان خاویاری درباره تکثیر و پرورش تمام دوره­ای ماهیان خاویاری و دورگه‌های حاصل از بلوگا و استرلیاد بنام بستر، متشکه از 7 تا 13 سپتامبر 1993 مسکو- کاستروما. 150ص.
Acerete L., Balasch J.C., Espinosa E., Josa A. and Tort L. 2004. Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture, 237: 167–178.
Alabaster J.S., Shurben D.G. and Knowles G. 1979. The effect of dissolved oxygen and salinity on the toxicity of ammonia to smolts of salmon, Salmo salar L. Journal of Fish Biology, 15: 705–712.
Barbieri E. and Doi S. 2011. Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquaculture International, 20: 373–382.
Bayunova L., Barannikova I. and Semenkova T. 2002. Sturgeon stress reactions in aquaculture. Journal of Applied Ichthyology, 18: 397–404.
Birstein V.J. 1996. Sturgeons may soon disappear from the Caspian Sea. Russian Conservation News, 7: 15–16.
Chebanov M. and Billard R. 2001. The culture of sturgeon in Russia: Production of juveniles for stocking and meat for human consumption. Aquatic Living Resources, 14(6): 375–381.
Chen J.C. and Lin C.Y. 1991. Lethal effects of ammonia and nitrite on Penaeus penicillatus juveniles at two salinity levels. Comparative Biochemistry and Physiology (C): 100(3): 477–482.
Chowdhury I. and Joy K.P. 2000. Effects of administration of testosterone on some biochemical correlation in seminal vesicle of Bloch (Heteropneustes fossilis) during preparatory phase: A study correlating changes in plasma testosterone level and testis activity. Indian Journal of Experimental Biology, 38: 713–719.
Cogun H.Y., Firidin G., Aytekin T., Firat O., Firat O., Temiz O., Varkal H.S. and Kargin F. 2017. Acute toxicity of nitrite on some biochemical, hematological and antioxidant parameters in Nile Tilapia (Oreochromis niloticus L, 1758). Fresenius Environmental Bulletin, 26(2): 1712–1719.
Das P.C., Ayyappan S., Jena J.K. and Das B.K. 2004. Nitrite toxicity in Cirrhinus mrigala (Ham.): Acute toxicity and sub-lethal effect on selected haematological parameters. Aquaculture, 235: 633–644.
Dettlaff T.A., Ginsburg A.S. and Schmalhausen O.I. 1993. Sturgeon fishes, development. Ellis A.E. lysozyme assay. P: 101–103. In: Stolen J.S., Fletcher D.P., Anderson B.S. and Robertson B.S. (Eds.). Techniques in Fish Immunology. SOS Publication, USA.
Ellis A.E. 1990. Lysozyme assay. In: P: 101–103. Stolen J.S., Fletcher D.P., Anderson B.S. and Robertson B.S. (Eds.). Techniques in Fish Immunology. SOS Publication, USA.
Gao X.Q., Fei F., Huo H.H., Huang B., Meng S.X., Zhang T. and Liu B.L. 2020. Impact of nitrite exposure on plasma biochemical parameters and immune-related responses in Takifugu rubripes. Aquatic Toxicology, 218: 1–8 (105362).
Gao Z., Wang W., Abbas K., Zhou X., Yang Y., Diana J.S., Wang H., Wang H., Li Y. and Sun Y. 2007. Haematological characterization of loach Misgurnus anguillicaudatus: A comparison among diploid, triploid and tetraploid specimens. Comparative Biochemistry and Physiology, 147(4): 1001–1008.
Garcia V., Catala-Gregori P., Hernandez F., Megias M.D. and Madrid J. 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research, 16: 555–562.
Iftikar F.I., Matey V. and Wood C.M. 2010. The ionoregulatory responses to hypoxia in the freshwater rainbow trout Oncorhynchus mykiss. Physiological and Biochemical Zoology, 83(2): 343–355.
ISO 6058. 1984. Water quality- Detemination of calcium content- EDTA titrimetric method. American National Standards Institute. 24P.
ISO 9964-1. 1993. Water quality- Determination of sodium and potassium- Part 1: Determination of sodium by atomic absorption spectrometry. American National Standards Institute. 24P.
Jia R., Han C., Lei J.L., Liu B.L., Huang B., Huo H.H. and Yin S.T. 2015. Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). Aquatic Toxicology, 169: 1–9.
Khoshbavar-Rostami H., Soltani M. and Hassan H. 2006. Immune response of great sturgeon (Huso huso) subjected to long-term exposure to sublethal concentration of the organophosphate, diazinon. Aquaculture, 256: 88–94.
Kim D. and Austin B. 2006. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish and Shellfish Immunology, 21: 513–524.
Kim J.H., Kim J.Y., Lim L.J., Kim S., Choi H. and H.Y. 2018. Effects of waterborne nitrite on hematological parameters and stress indicators in olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater. Chemosphere, 209: 28–34.
Kir M. and Sunar M.C. 2018. Acute toxicity of ammonia and nitrite to sea bream, Sparus aurata (Linnaeus, 1758), in relation to salinity. Journal of the World Aquaculture Society, 49(3): 516–522.
Kir M., Sunar M. and Gok M. 2019. Acute ammonia toxicity and the interactive effects of ammonia and salinity on the standard metabolism of European sea bass (Dicentrarchus labrax). Aquaculture, 511: 1–6 (734273).
Kroupova H., Machova J., Piackova V., Blahova J., Dobsikova R., Novotny L. and Svobodova Z. 2008. Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety, 71(3): 813–820.
Lawson T.B. 1995. Fundamentals of Aquacultural Engineering. Chapman and Hall, USA. 364P.
Le T.H.G., Nguyen T.P., Nguyen T.T.V., Do T.T.H. and Pham N.N. 2018. Effects of nitrite exposure on haematological parameters and growth in clown knifefish (Chitala ornata, Gray 1831). Can Tho University Journal of Science, 54(2): 1–8.
Lin Y.C. and Chen J.C. 2001. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1): 109–119.
Martinez-Alvarez R.M., Hidalgo M.C., Domezain A., Morales A.E., Garcia-Gallego M. and Sanz A. 2002. Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. Journal of Experimental Biology, 205: 3699–3706.
Munker R., Hillwe E., Glass J. and Paquette R. 2007. Modern Hematology: Biology and Clinical Management. Humana Press, USA. 498P.
Nussey G., Van Vuren J.H.J. and Du Preez H.H. 2002. The effect of copper and zinc at neutral and acidic pH on the general haematology and osmoregulation of Oreochromis mossambicus. African Journal of Aquatic Science, 27(1): 61–84.
Person-Le Ruyet J., Chartois H. and Quemener L. 1995. Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquacalture, 136(1-2): 81–194.
Qstegaard A.E., Martin S.A.M., Wang T., Stet R.J.M and Secombes C.J. 2009. Rainbow trout (Oncorhynchus mykiss) possess multiple novel immunoglobulin-like transcripts containing either an ITAM or ITIMs. Developmental and Comparative Immunology, 33: 525–532.
Quick G. and White T. 2007. The good sturgeon guide in association with sturgeon for garden ponds. Retrieved Jun 15, 2022, from www.pond-life.me.uk.
Ramesh C.G. 2007. Veterinary Toxicology, Basic and Clinical Principles. Academic Press, USA. 1238P.
Ramirez-Rochin J., Frias-Espericueta M.G., Fierro-Sanudo J.F., Alarcon-Silvas S.G., Fregoso-Lopez M.G. and Paez-Osuna F. 2017. Acute toxicity of nitrite on white shrimp Litopenaeus vannamei (Boone) juveniles in low-salinity water. Aquaculture Research, 48: 2337–2343.
Rasmussen R.S. and Korsgaard B. 1996. The effect of external ammonia on growth and ood utilization of juvenile turbot (Scophthalmus maximus L.). Journal of Experimental Marine Biology and Ecology, 205(1-2): 35–48.
Sadauskas-Henrique H., Sakuragui M.M., Paulino M.G. and Fernandes M.N. 2011. Using condition factor and blood variable biomarkers in fish to assess water quality. Environmental Monitoring and Assessment, 181(1-4): 29–42.
Sampaio L.A., Wasielesky W., Miranda-Filho K.C. 2002. Effect of salinity on acute toxicity of ammonia and nitrite to juvenile Mugil platanus. Bulletin of Environmental Contamination and Toxicology, 68(5): 668–674.
Schlenk D. and Benson W.H. 2001. Target Organ Toxicity in Marine and Freshwater Teleosts. CRC Press, USA. 382P.
Seriani R., Abessa D.M.S., Kirschbaum A.A., Pereira C.D.S., Romano P. and Paiva M.J.T. 2011. Relationship between water toxicity and hematological changes on Oreochromis niloticus. Brazilian Journal of Aquatic Science and Technology, 15(2): 47–53.
Sink T.D. 2010. Influence of pH, salinity, calcium, and ammonia source on acute ammonia toxicity to golden shiners, Notemigonus crysoleucas. Journal of the World Aquaculture Society, 41: 411–420.
Siwicki A.K. and Anderson D.P. 1993. Nonspecific defence mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs. P: 105–111. In: Siwicki A.K., Anderson D.P. and Waluga J. (Eds.). Fish Disease Diagnosis and Prevention Methods. FAO-Project, Poland.
Stormer J., Jensen F.B. and Rankin J.C. 1996. Uptake of nitrite, nitrate, and bromide in rainbow trout, Oncorhynchus mykiss: effects on ionic balance. Canadian Journal of Fisheries and Aquatic Sciences, 53: 1943–1950.
Tintos A., Miguez J.M., Mancera J.M. and Soengas J.L. 2006. Development of a microtitre plate indirect ELISA for measuring cortisol in teleosts, and evaluation of stress responses in rainbow trout and gilthead sea bream. Journal of Fish Biology, 68: 251–263.
Tomasso J.R. 2012. Environmental nitrite and aquaculture: A perspective. Aquaculture International, 20: 1107–1116.
TRC. 1984. Effects on biotic systems. O.E.C.D Guidline for Testing of Chemicals, Section 2. P: 1–39.
USEPA. 1985. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. Environmental Protection Agency, EPA, USA. 266P.
Vandewalle H., Peres G. and Monod H. 1987. Standard anaerobic exercise test. Sports Medicine, 4: 268–289.
Vedel N.E., Korsgaard B. and Jensen F.B. 1998. Isolated and combined exposure to ammonia and nitrite in rainbow trout (Oncorhynchus mykiss): Effects on electrolyte status, blood respiratory properties and brain glutamine/ glutamate concentrations. Aquatic Toxicology, 41(4): 325–342.
Wang J., Tang H., Zhang X., Xue X., Zhu X., Chen Y. and Yang Z. 2018. Mitigation of nitrite toxicity by increased salinity is associated with multiple physiological responses: A case study using an economically important model species, the juvenile obscure puffer (Takifugu obscurus), Environmental Pollution, 232: 137–145.
Williams E.M., Nelson J.A. and Heisler N. 1997. Cardio‐respiratory function in carp exposed to environmental nitrite. Journal of Fish Biology, 50: 137–149.
Witeska M., Jezierska B. and Wolnieki J. 2006. Respiratory and hematological response of tench, Tinca tinca (L.) to a short-term cadmium exposure. Aquaculture International, 14: 141–152.
Zhang M., Yin X., Li M., Wanga R., Qiana Y. and Hongc M. 2020. Effect of nitrite exposure on haematological status, oxidative stress, immune response and apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology (C), 238: 1–8.