Identification and isolation of sprmatogonial stem cells from beluga ( Huso huso) testicular tissue

Document Type : Research Paper

Authors

1 Ph.D. Student in Fisheries Science, Department of Fisheries, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran

2 Professor in Department of Fisheries, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran

3 Associate Professor in Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protections of Waters, South Bohemia University, Ceske Budejovice, Czech.

4 Professor in Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran

5 Associate Professor in Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway

Abstract

Spermatogonial stem cells (SSCs) are unique cells and able to transmit genetic information to the next generation, therefore, they play an important role in chimeric fish production and preservation of rare species. This study was performed for the first time with the aim of examining morphology of spermatogonial cells through histological method and then isolating them through enzymatic digestion method from beluga (Huso huso) testicular tissue. Histological examination of testicular tissue of one- to three-year-old beluga showed there are two general types of spermatogonial cells, undifferentiated spermatogonia (SSCs) and differentiated spermatogonia. SSCs were often identified by their large size, irregular nuclear envelope, distinct nuclear components and one to two nuclei. Moreover, in one-year-old fish the frequency of SSCs was significantly higher than 2 and 3-year-old beluga (P<0.05). Isolation of testicular tissue cells of one-year-old beluga through enzymatic digestion was indicated that using 0.1% trypsin enzyme with phosphate buffer for 2 to 3 hours at 16-20°C has higher efficiency based on frequency and viability of beluga spermatogonial cells (P<0.05). This study has provided basic information for isolation beluga SSCs for transplantation to produce chimeric fish.

Keywords


اسماعیلی ا.ح.، کلباسی م.ر.، بهاروند ح. و حسینی س.ن. 1394. مطالعه بیان ژن­های پرتوانی در مراحل مختلف تکوین جنینی ماهی گور­خری (Danio rerio). فیزیولوژی و بیوتکنولوژی آبزیان، 3(1): 111-93.
امامی لنگرودی ف.، میرواقفی ع.، فرهمند ح. و مجازی امیری ب. 1395. بررسی بافت‌شناسی گناد فیل‌ماهیان پرورشی یکساله و دو ساله در استان قم. شیلات (منابع طبیعی ایران)، 69(3): 330-323.
پورسعید س.، کلباسی م.ر.، حسینی س.ن.، یوشیزاکی گ. و بهاروند ح. 1398. مکان‌یابی رونوشت Vasa در بافت بیضه ماهی آزاد دریای خزر (Salmo caspius) با شیوه دورگه‌سازی در محل (In Situ Hybridization). فیزیولوژی و بیوتکنولوژی آبزیان، 7(1): 37-23.
نوروزی ک.، کلباسی م.ر.، فرزانه پ.، شاهزاده فضلی س.ا.، فرقدان م.، نسیمیان ا.، ایزدپناه م.، آشوری موثق س.، مرادمندی ز. و فرهنگ­نیا م. 1393. تولید و ارزیابی رده سلولی اپیتلیالی شکل از بافت باله ماهی آزاد دریای خزر (Salmo trutta caspius). فیزیولوژی و بیوتکنولوژی آبزیان، 2(3): 88-69.
Brinster R.L. and Avarbock M.R. 1994. Germ line transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences o the United States of America, 91(24): 11303–11307.
Falahatkar B. and Poursaeid S. 2013. Gender identification in great sturgeon (Huso huso) using morphology, sex steroids histology and endoscopy. Anatomia, Histologia, Embryologia, 43(2): 81–89.
Falahatkar B., Akhavan S.R., Tolouei Gilani M.H. and Abbasalizadeh A. 2013. Sex identification and sexual maturity stages in farmed great sturgeon, Huso huso L. through biopsy. Iranian Journal of Veterinary Research, 14(2): 133–139.
Falahatkar B., Tolouei Gilani M.H., Falahatkar S. and Abbasalizadeh A. 2011. Laparoscopy, a minimally-invasive technique for sex identification in cultured great sturgeon Huso huso. Aquaculture, 321(3-4): 273–279.
Genten F., Terwinghe E. and Danguy A. 2009. Atlas of Fish Histology. Science Publishers, USA. 219P.
Hewitson T. and Darby I. 2009. Histology Protocols. Human Press, P: 225.
Higaki S., Shimada M., Kawamoto K., Todo T., Kawasaki T., Tooyama I., Fujioka Y., Sakai N. and Takada T. 2017. In vitro differentiation of fertile sperm from cryopreserved spermatogonia of the endangered endemic cyprinid honmoroko (Gnathopogon caerulescens). Scientific Reports, 17(7): 1–14 (e42852).
Kanatsu-Shinohara M., Ogonuki N., Inoue K., Miki H., Ogura A., Toyokuni S. and Shinohara T. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction, 69(2): 612–616.
Lacerda S.M.S.N., Aponte P.M., Costa G.M.J., Campos-Junior P.H.A. and Segatelli T.M. 2012. An overview of spermatogonial stem cell physiology, niche and transplantation in fish. Animal Reproduction, 9(4): 798–808.
Lacerda S.M.S.N., Batlouni S.R., Costa G.M., Segatelli T.M., Quirino B.R., Queiroz B.M., Kalapothakis E. and França L.R. 2010. A new and fast technique to generate offspring after germ cells transplantation in adult fish: The Nile tilapia (Oreochromis niloticus) model. PLoS One, 5(5): 1–9 (e10740).
Lacerda S.M.S.N., Costa G.M.J. and Franca L.R. 2014. Biology and identity of fish spermatogonial stem cell. General and Comparative Endocrinology, 207(1): 56–65.
Nobrega R.H., Greebe C.D., Van De Kant H., Bogerd J., França L.R. and Schulz R.W. 2010. Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS One, 5(9): 1–16 (12808).
Okutsu T., Shikina S., Kanno M., Takeuchi Y. and Yoshizaki G. 2007. Production of trout offspring from triploid salmon parents. Science, 317(5844): 1–2 (e1517).
Poursaeid S., Kalbassi M.R., Hassani N. and Baharvand H. 2020. Isolation, characterization, in vitro expansion and transplantation of Caspian trout (Salmo caspius) type a spermatogonia. General and Comparitive Endocrinology, 289(1): 1–13 (e113341).
Psenicka M. and Saito T. 2020. Specificity of germ cell technologies in sturgeons. P: 336–357. In: Yoshida M. and Asturiano J. (Eds.). Reproduction in Aquatic Animal. Springer, Singapore.
Psenicka M., Saito T., Linhartova Z. and Gazo I. 2015. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology, 83(6): 1085–1092.
Psenicka M., Saito T., Rodina M. and Dzyuba B. 2016. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology, 72(2): 119–122.
Robles V., Riesco M.F., Psenicka M., Saito T., Valcarce D.G., Cabrita E. and Herraez P. 2016. Biology of teleost primordial germ cells (PGCs) and spermatogonia: Biotechnological applications. Aquaculture, 472(1): 4–20.
Sato M., Hayashi M. and Yoshizaki G. 2017. Stem cell activity of type A spermatogonia is seasonally regulated in rainbow trout. Biology of Reproduction, 96(6): 1303–1316.
Schulz R.W. and Nobrega R.H. 2011. Anatomy and histology of fish testis. P: 616–626. In: Farrell A.P. (Ed.). Encyclopedia of Fish Physiology: From Genome to Environment, Vol. 1. Academic Press, USA.
Shang M., Su B., Lipke E.A., Perera D.A., Li C., Qin Z., Li Y., Dunn D.A., Cek S., Peatman E. and Dunham R.A. 2015. Spermatogonial stem cells specific marker identification in channel catfish, Ictalurus punctatus and blue catfish, I. furcatus. Fish Physiology Biochemistry, 41(6): 1545–1556.
Shikina S., Nagasawa K., Hayashi M., Furuya M., Iwasaki Y. and Yoshizaki G. 2013. Short-term          in vitro culturing improves transplantability of type A spermatogonia in rainbow trout (Oncorhynchus mykiss). Molecular Reproduction and Development, 80(9): 763–773.
Tonelli F.M.P., Lacerda S.M.S.N., Paiva N.C.O., Lemos M.S., De Jesus A.C., Pacheco F.G., Correa Junior J.D., Ladeira L.O., Furtado C.A., França L.R. and Resende R.R. 2016. Efficient and safe gene transfection in fish spermatogonial stem cells using nanomaterials. RSC Advances, 6(58): 52636–52641.
Xie X., Li P., Psenicka M., Ye H., Steinbach C., Li C. and Wei Q. 2019. Optimization of in vitro culture conditions of sturgeon germ cells for purpose of surrogate production. Animals, 9(3): 1–16 (e106).
Xie X., Nobrega R. and Psenicka M. 2020. Spermatogonial stem cells in fish: Characterization, isolation, enrichment, and recent advances of in vitro culture systems. Biomolecules, 10(4): 1–31 (e664).
Zhang R., Sun J. and Zou K. 2015. Advances in isolation methods for spermatogonial stem cells. Stem Cell Review and Reports, 12(1): 15–25.