Effects of different dietary levels of Azomite on muscle antioxidant defense, survival rate and resistance to Aeromonas hydrophila in juvenile common carp (Cyprinus carpio )

Document Type : Research Paper


1 M.Sc. in Fisheries, Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2 Assistant Professor in Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

3 Professor in Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran


The aim of this study was to evaluate the effects of Azomite on muscle antioxidant defense, survival rate and resistance to Aeromonas hydrophila experimental infection in juvenile common carp. For this purpose, a total of 180 fish, with initial average weight of 20.05­±4.15g, were randomly divided in 4 treatments and fed 4 different diets including control group (without Azomite), treatment 1 (2g/kg Azomite), treatment 2 (4g/kg Azomite) and treatment 3 (8g/kg Azomite) for a period of 8 weeks. The results showed that the muscle antioxidant defense was not significantly affected by Azomite consumption (P>0.05). However, the highest activity of catalase and glutathione peroxidase was observed in treatment 3. Oral administration of Azomite had no significant effect on the fish survival rate during the period of experiment (P>0.05). But the resistance to A. hydrophila was significantly increased and the highest resistance (the lowest mortality rate) was related to treatment 2, which showed a significant difference with the control group (P<0.05). According to results, it can be suggested that adding 4g/kg of Azomite to common carp diet can increase resistance to A. hydrophila infection without having any negative effect on muscle antioxidant defense system.


ایمانی م.ج.، زنگویی ن.، ذاکری م. و موسوی س.م. 1398. اثرات سطوح مختلف  زئوتن در جیره غذایی بر شاخص‌های رشد و تغذیه، ترکیب بیوشیمیایی لاشه و عملکرد سیستم ایمنی ماهی کپور معمولی. مجله فیزیولوژی و بیوتکنولوژی آبزیان، 7(1): 126-103.
ایمانی م.ج.، زنگویی ن.، ذاکری م. و موسوی م. 1399. اثرات سطوح مختلف زئوتن بر برخی فاکتورهای خونی و شاخص‌های رشد ماهی کپور معمولی. مجله بوم‌شناسی آبزیان، 4(9): 78-67.
روشن و. ۱۳۹۶. اثرات تغذیه‌ای سطوح مختلف آزومایت بر فعالیت آنزیم‌های گوارشی کپور معمولی در مرحله انگشت‌قد. پایان‌نامه کارشناسی ارشد، دانشگاه علوم و فنون دریایی خرمشهر. 80ص.
علیشاهی م.، سلطانی م.، مصباح م. و زرگر ا. 1391. اثر تحریکات رشد و ایمنی سه عصاره گیاهی در کپور معمولی (Cyprinus carpio). مجله تحقیقات دامپزشکی، 67(2): 142-135.
 Atli G. and Canli M. 2007. Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology, 145: 282–287.
Azam A.R., Khan N. and Iqbal K.J. 2016. Impact of azomite supplemented diets on the growth, body composition and endogenous enzymes in genetically male tilapia. Pakistan Journal of Zoology, 48(4): 1205–1208.
Berntssen M.H.G., Lundebye A.K. and Hamre K. 2000. Tissue lipid peroxidative responses in Atlantic salmon (Salmo salar L.) parr fed high levels of dietary copper and cadmium. Fish Physiology and Biochemistry, 23: 35–48.
Bondy S.C. and Cambell A. 2001. Oxidative and inflammatory properties of aluminium: Possible relevance in Alzheimer’s disease. P: 311–321. In: Exley C. (Ed.). Aluminium and Alzheimer’s Disease, The Science That Describes the Link. Elsevier, Netherlands.
Buege J.A. and Aust S.D. 1978.  Microsomal lipid peroxidation. Methods in Enzymology, 52: 302–310.
Fodge D., Fodge D.U. and Meyer L. 2014. The nutritional and immune impact of azomite in tilapia and shrimp survival. International Journal of Aquafeed, 17(3): 44–46.
Goth L. 1991. A simple method for determination of serum catalase activity and revision of reference rang. International Journal of Clinical Chemistry, 196(2): 143–152.
Halliwell B. and Chirico S. 1993.  Lipid peroxidation: Its mechanism, measurement, and significance. The American Journal of Clinical Nutrition, 57(5): 715–725.
Han D., Xie S., Liu M., Xiao X., Liu H., Zhu X. and Yang Y. 2011. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of Gibel carp (Carassius auratus gibelio). Aquaculture Nutrition, 17(3): 741–749.
Harikrishnan R., Balasundaram C. and Heo M.S. 2011. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture, 317(1): 1–15.
Irianto A. and Austin B. 2002. Probiotics in aquaculture. Journal of Fish and Disease, 25(11): 643–642.
Jaleel M.A., Musthafa M.S., Ali A.J., Mohamed M.J. and Arun Kumar M. 2015. Studies on the growth performance and immune response of Koi carp fingerlings (Cyprinus carpio koi) fed with azomite supplemented diet. Journal of Biology and Nature, 4: 160–169.
Jawahar S., Nafar A., Vasanth K., Mustafa M.S., Arockiaraj J., Balasundaram C. and Harikrishnan R. 2016. Dietary supplementation of zeolite on growth performance, immunological role, and disease resistance in Channa striatus against Aphanomyces invadans. Journal of Fish and Shellfish Immunology, 5(1): 161–169.
Juzaitis-Boelter C.P., Benson A.P., Ahammad M.U., Jones M.K., Ferrel J. and Davis A.J. 2021. Dietary inclusion of azomite improves feed efficiency in broilers and egg production in laying and broiler breeder hens. Poultry Science, 100(6): 1–9 (101144).
Kalaiselvi T. and Panneerselvam C. 1998. Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats. Journal of Nutrition and Biochemistry, 9: 575–581.
Liu A., Leng X., Li X., Wang L., Luo Y. and Zhu R. 2009. Effects of azomite on growth, intestinal structure and non-specific immunity of tilapia (Oreochromis niloticus × O. aureus). Chinese Journal of Animal Nutrition, 21(6): 1006–1011.
Liu M.Z., Leng X.J., Li X.Q., Xiao C.W. and Chen D.R. 2011. Effects of azomite on growth performance, intestinal digestive enzyme activities and serum nonspecific immune of grass carp (Ctenopharyngodon idella). Journal of Zhejiang University, 7: 312–318.
Marklund S. and Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3): 469–474.
Paglia D.E. and Valentine W.N. 1967. Studies on quantitative and qualitative characterization of erythrocytes. Journal of Laboratory and Clinical Medicine, 70(1): 158–169.
Shin C.H., Cha J.H., Rahimnejad S., Jeong J.B., Yoo B.W., Lee B.K., Ahn H.J., Choi S.I., Choi Y.J., Park Y.H., Kim J.D. and K.J. 2014. Effects of dietary supplementation of Barodon, an anionic alkali mineral complex, on growth performance, feed utilization, innate immunity, goblet cell and digestibility in olive flounder (Paralichthys olivaceus). Asian-Australasian Journal of Animal Sciences, 27(3): 383–390.
Skrha J. 2012. Caloric restriction and oxidative stress. P: 83–103. In: Farooqui A.A. and Farooqui T. (Eds.). Oxidative Stress in Vertebrates and Invertebrates. Wiley-Blackwell Press, USA.
Tan C.G., Li X.Q., Leng X.J., Su X.G., Chen L., Liu B., Ma F., Cai X.Q. and Guo T. 2014. Effects of supplemental azomite in diets on growth, immune function and disease resistance of white shrimp (Litopenaeus vannamei). Journal of Aquaculture Nutrition, 20(3): 324–331.
Tang Y., Zhang B., Wang L. and Li J. 1997. Effect of dietary rare earth elements-amino acid compounds on growth performance of carp and rainbow trout. Journal of Fisheries of China, 10: 88–90.
Ward R.J., Zhang Y. and Crichton R.R. 2001. Aluminum toxicity and iron homeostasis. Journal of Inorganic Biochemistry, 87: 9–14.
Yokel R.A. 2002. Brain uptake, retention, and efflux of aluminum and manganese. Environmental Health Perspectives, 110: 699–704.