Construction of pCDNA3.1-AopB gene construct as a DNA vaccine model against Aeromonas hydrophila in carp

Document Type : Research Paper

Authors

1 Ph.D. in Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Professor in Department of Livestock, Avian and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Associate Professor in Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Professor in Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

5 Associate Professor in Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

10.22124/japb.2022.21342.1450

Abstract

Aeromonas hydrophila is one of the most important pathogenic bacteria in fish that causes hemorrhagic septicemia, ascites and mortality in different ages and in different fish species including carp. Immunization is one of the best ways to prevent this disease. The use of gene constructs containing bacterial-specific antigens has been developed in recent years to develop high-performance vaccines and to use them in easier methods such as oral administration in aquaculture. In this study, aopB protein of type III secretory system of A. hydrophila isolated from carp in Khuzestan province was used to design a gene construct for DNA vaccine which cloned into the expression eukaryotic plasmid pCDNA3.1. In this study, A. hydrophila isolated from carp with Aeromonas septicemia in carp farms of Khuzestan province which species confirmed by molecular and phenotypic methods. The aopB gene sequence was extracted from the NCBI gene bank and the gene encoding region was amplified using primers containing EcoRI and NheI enzyme cleavage regions. The PCR product was then inserted into the eukaryotic expression plasmid pCDNA3.1-HisA and was transfected to TOP10-F 'bacteria using heat shock. After screening for positive clones using colony PCR and sequencing, the pCDNA3.1-AopB gene construct was transferred to CHO cells using electroporation method and recombinant protein expression was assessed by Western blotting on cell lysis. PCR results and sequencing of gene constructs indicated the cloning of the aopB gene approximately 1000bp in plasmid pCDNA3.1-HisA. Western blot using anti-HisTag antibody showed the presence of a protein with a molecular weight of about 36kD. Conclusively, the pCDNA3.1-AopB gene construct containing the aopB gene was designed and validated. This gene construct can be used in clinical studies to evaluate the immunogenicity of carp in experimental pathogenicity with A. hydrophila.

Keywords

Main Subjects


آهنگرزاده م.، قربانپور نجف آبادی م.، پیغان ر.، شریف روحانی م. و سلطانی م. 1394. نقش آئروموناس هیدروفیلا در سپتی‌سمی‌های باکتریایی کپورماهیان پرورشی استان خوزستان. مجله دامپزشکی ایران، 11(3): 16-5.
علیشاهی م.، سلطانی م.دو زرگر ا. 1388. بررسی باکتریایی تلفات ماهی آمور (Ctenopharyngodon idella) در استان خوزستان. مجله دامپزشکی ایران، 22(5):    34-25.
Abdelhamed H., Banes M., Karsi A. and Lawrence M.L. 2019. Recombinant ATPase of virulent Aeromonas hydrophila protects channel catfish against motile Aeromonas septicemia. Frontiers in Immunology, 10: 1–7 (1641).
Bulir D.C., Liang S., Lee A., Chong S., Simms E., Stone C., Kaushic C., Ashkar A. and Mahony J.B. 2016. Immunization with chlamydial type III secretion antigens reduces vaginal shedding and prevents fallopian tube pathology following live C. muridarum challenge. Vaccine, 34(34): 3979–3985.
Carvalho-Castro G.A., Lopes C.O., Leal C.A.G., Cardoso P.G., Leite R.C. and Figueiredo H.C.P. 2010. Detection of type III secretion system genes in Aeromonas hydrophila and their relationship with virulence in Nile tilapia. Veterinary Microbiology, 144(3-4): 371–376.
El-Bahar H.M., Ali N.G., Aboyadak I.M., Khalil S.A.E.S. and Ibrahim M.S. 2019. Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. International Microbiology, 22(4), 479–490.
Ellis A.E. 1988. Fish Vaccination. Academic Press, USA. 255P.
Fasciano A.C., Shaban L. and Mecsas J. 2019. Promises and challenges of the type three secretion system injectisome as an antivirulence target. EcoSal Plus, 8(2): 1–18.
Gao Y., Pei C., Sun X., Zhang C., Li L. and Kong X. 2018. Plasmid pcDNA3. 1-s11 constructed based on the S11 segment of grass carp reovirus as DNA vaccine provides immune protection. Vaccine, 36(25): 3613–3621.
Han B., Xu K., Liu Z., Ge W., Shao S., Li P., Yan N., Li X. and Zhang Z. 2019. Oral yeast-based DNA vaccine confers effective protection from Aeromonas hydrophila infection on Carassius auratus. Fish and Shellfish Immunology, 84: 948–954.
Inthasaeng P., Unajak S., Areechon N., Hirono I. and Surachetpong W. 2018. Efficacy of pcDNA-Alp1 DNA vaccine against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). The Thai Journal of Veterinary Medicine, 48(2): 279–288.
Jordan M., Schallhorn A. and Wurm F.M. 1996. Transfecting mammalian cells: Optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Research, 24(4): 596–601.
Koroleva E.A., Kobets N.V., Shcherbinin D.N., Zigangirova N.A., Shmarov M.M., Tukhvatulin A.I. and Gintsburg A.L. 2017. Chlamydial type III secretion system needle protein induces protective immunity against Chlamydia muridarum intravaginal infection. BioMed Research International, 2017: 1–14 (3865802).
Li J.N., Zhao Y.T., Cao S.L., Wang H. and Zhang J.J. 2020. Integrated transcriptomic and proteomic analyses of grass carp intestines after vaccination with a double-targeted DNA vaccine of Vibrio mimicus. Fish and Shellfish Immunology, 98: 641–652.
Li L., Lin S.L., Deng L. and Liu Z.G. 2013. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. Journal of Fish Diseases, 36(12): 987–995.
Martinez-Becerra F. J., Kissmann J.M., Diaz-McNair J., Choudhari S.P., Quick A.M., Mellado-Sanchez G., Clements J.D., Pasetti M.F., and Picking W.L. 2012. Broadly protective Shigella vaccine based on type III secretion apparatus proteins. Infection and Immunity, 80(3): 1222–1231.
Mzula A., Wambura P.N., Mdegela R.H. and Shirima G.M. 2019. Current state of modern biotechnological-based Aeromonas hydrophila vaccines for aquaculture: A systematic review. BioMed Research International, 2019: 1–11 (3768948).
Pessoa R.B.G., De Oliveira W.F., Marques D.S.C., Dos Santos Correia M.T., De Carvalho E.V.M.M. and Coelho L.C.B.B. 2019. The genus Aeromonas: A general approach. Microbial Pathogenesis, 130: 81–94.
Rasmussen-Ivey C.R., Figueras M.J., McGarey D. and Liles M.R. 2016a. Virulence factors of Aeromonas hydrophila. Frontiers in Microbiology, 7: 1337–1351.
Rasmussen-Ivey C.R., Hossain M.J., Odom S.E., Terhune J.S., Hemstreet W.G., Shoemaker C.A., Zhang D., Xu D.H., Griffin M.J., Liu Y.J., Figueras M.J., Santos S.R., Newton J.C. and Liles M.R. 2016b. Classification of a hypervirulent Aeromonas hydrophila pathotyperesponsible for epidemic outbreaks in warm-water fishes. Frontiers in Microbiology, 7: 1–16 (1615).
Shefat S.H.T. 2018. Vaccines for use in finfish aquaculture. Acta Scientific Pharmaceutical Sciences, 2(11): 15–19.
Song M.F., Kang Y.H., Zhang D.X., Chen L., Bi J.F., Zhang H.P. and Shan X.F. 2018. Immunogenicity of extracellular products froman inactivated vaccine against Aeromonas veronii TH0426 in koi, Cyprinus carpio. Fish and Shellfish Immunology, 81: 176–181.
Thirumalaikumar E., Lelin C., Sathishkumar R., Vimal S., Anand S.B., Babu M.M. and Citarasu T. 2021. Oral delivery of pVAX-OMP and pVAX-hly DNA vaccine using chitosan-tripolyphosphate (Cs-TPP) nanoparticles in rohu (Labeo rohita) for protection against Aeromonas hydrophila infection. Fish and Shellfish Immunology, 115: 189–197.
Van Sang N. and Uyen N.T. 2021. Cloning, expression, purification, and oligomeric characterization of the AopB-C-terminus domain in T3SS major translocator protein of Aeromonas hydrophila. VNU Journal of Science: Natural Sciences and Technology, 37(3): 12–17.
Vilches S., Jimenez N., Tomas J.M. and Merino S. 2009. Aeromonas hydrophila AH-3 type III secretion system expression and regulatory network. Applied and Environmental Microbiology, 75(19): 6382–6392.
Xiong X.M., Chen Y.L., Liu L.F., Wang W.M., Robinson N.A. and Gao Z.X. 2017. Estimation of genetic parameters for resistance to Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala). Aquaculture, 479: 768–773.
Zellweger R.M., Carrique-Mas J., Limmathurotsakul D., Day N.P.J., Thwaites G.E. and Baker S. 2017. A current perspective on antimicrobial resistance in Southeast Asia. The Journal of Antimicrobial Chemotherapy, 72: 2963–2972.