Testing beluga molecular sex determination by amplification of female specific genomic region

Document Type : Research Paper

Authors

1 Assistant Professor in Department of Genetics and Biotechnology, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.

2 Assistant Professor in Department of Physiology and Biochemistry, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

3 Ph.D. in Fisheries Science, Department of Physiology and Biochemistry, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

4 Assistant Professor in Department of Fish Health and Diseases, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

5 Scientific Member in Department of Genetics and Biotechnology, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

10.22124/japb.2022.21408.1454

Abstract

In sturgeon aquaculture, sex determination is a major challenge since culture of female sturgeon, as a valuable source of caviar production, is economically important and the differentiation of male and female sturgeons is indeed necessary to reduce costs. Indirect evidence shows that the sex determination system in sturgeon is ZW and the sex of the female determines the sex. The situation which underlies locus discovery involved in sturgeon sex determination in genomic studies. The current study, for the first time in Iran, aimed to determine the beluga sex using the above-mentioned locus specific primers. For this purpose, caudal fins samples were collected from 23 beluga broodstock (14 females and 9 males). Genomic DNA was extracted by the ammonium acetate method. After quantitative and qualitative evaluation of the extracted DNA, specific primers were used to amplify a small fragment of the female beluga locus. Based on the obtained results, the single fragment slightly larger than 100 bp in size was amplified in 14 females while no specific amplification was observed in the male. Therefore, the molecular test can be used as a reliable, efficient, relatively low-cost, and non-invasive method for early sex determination in beluga in Iran.

Keywords

Main Subjects


حلاجیان ع. 1386. تفکیک ماهیان ماده از ماهیان نر خاویاری پرورشی از طریق جراحی. دنیای آبزیان، 5(11): 16-14.
حلاجیان ع.، کاظمی ر.، محسنی م.، دژندیان س.، یوسفی جوردهی ا.، بهمنی م.، پوردهقانی م.، یزدانی ساداتی م.ع. و یگانه ه. 1390. تکه‌برداری به روش جراحی و مطالعه بافت­شناسی گناد تاس‌ماهی ایرانی Acipenser persicus ‌پرورشی. مجله تحقیقات دامپزشکی، 66(3): 233-229.
شریعتی ا. 1389. تکثیر و پرورش ماهیان خاویاری. انتشارات موسسه آموزش عالی علمی کاربردی جهاد کشاورزی. 206ص.
مصلایی م.، میرزایی ح.، سیمونیان و.م. و خیراله م. 1394. نسل جدید روش­های توالی‌یابی و کاربرد­های آن، 33: 2480-2469.
Aljanabi M. and Martinez L. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25: 4692–4693.
Chapman F.A., Van Eenennaam J.P. and Doroshov S.I. 1996. The reproductive condition of white sturgeon, Acipenser transmontanus, in San Francisco Bay, California. Fishery Bulletin, 94: 628–634.
Chebanov M.S. and Galich E.V. 2013. Sturgeon hatchery manual. Food and Agriculture Organization of the United Nations (FAO). Fisheries and Aquaculture Technical Paper, Turkey. 297P.
Chen Y., Liu Y., Gong Q., Lai J., Song M., Du J. and Deng X. 2018. Gonadal transcriptome sequencing of the critically endangered Acipenser dabryanus to discover candidate sex-related genes. PeerJ Life and Environment Research, 6: 1–24 (e5339).
Degani G., Hajouj A. and Hurvitz A. 2021. Sex-based variation of gene expression in the gonads and fins of Russian sturgeon (Acipenser gueldenstaedtii). Open Journal of Animal Sciences, 11: 1–10.
Doroshov S.I., Moberg G.P. and Van Eenennaam J.P. 1997. Observations on the reproductive cycle of cultured white sturgeon, Acipenser transmontanus. Environmental Biology of Fishes, 48: 265–278.
Du K., Stock M., Kneitz S., Klopp C., Woltering J., Adolfi M., Feron R., Prokopov D., Makunin A., Kichigin I., Schmidt C., Fischer P., Kuhl H., Wuetz S., Gessner J., Werner K., Cabau C., Iampietro C., Parrinello H., Tomlinson C., Journot L., Postlethwait J.H., Braasch I., Trifonov V., Warren W.C., Meyer A., Guiguen Y., Schartl M. 2020. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology and Evolution, 4: 841–852.
Fajkowska M., Ostaszewska T. and Rzepkowska M. 2019. Review: Molecular mechanisms of sex differentiation in sturgeons. Reviews in Aquaculture, 12: 1003–1027.
Feist G., Van Eenennaam J.P., Doroshov S.I., Schreck C.B., Schneider R.P. and Fitzpatrick M.S. 2004. Early identification of sex in cultured white sturgeon, Acipenser transmontanus, using plasma steroid levels. Aquaculture, 232: 581–590.
Fontana F. and Colombo G. 1974. Chromosomes of Italian sturgeons. Experientia, 30: 739–742.
Fopp-Bayat D., Kolman R. and Woznicki P. 2007. Induction of meiotic gynogenesis in sterlet (Acipenser ruthenus) using UV-irradiated bester sperm. Aquaculture Research, 264: 54–58.
Hassanzadeh Saber M. and Hallajian A. 2014. Study of sex determination system in ship sturgeon (Acipenser nudiventris) using meiotic gynogenesis. Aquaculture International, 22: 273–279.
Havelka M. and Arai K. 2018. Hybridization and polyploidization in sturgeon. P: 669–687. In: Wang H.P., Piferrer F., Chen S. and Shen Z.G. (Eds.). Sex Control in Aquaculture. John Wiley and Sons Ltd., UK.
Keyvanshokooh S. and Gharaei A. 2010. A review of sex determination and searches for sex-specific markers in sturgeon. Aquaculture Research, 41(9): 1–7.
Keyvanshokooh S. and Vaziri B. 2008. Proteome analysis of Persian sturgeon (Acipenser persicus) ova. Animal Reproduction Science, 109(1-4): 287–297.
Kuhl H., Guiguen Y., Hohne C., Kreuz E., Du K., Klopp C., Lopez-Roques C., Santidrian Yebra-Pimentel E., Ciorpac M., Jorn Gessner J., Holostenco D., Kleiner W., Klaus Kohlmann K., Lamatsch D.K., Prokopov D., Bestin A., Bonpunt E., Debeuf E., Haffray P., Morvezen R., Patrice P., Suciu R., Dirks R., Wuertz S., Kloas W., Schartl M. and Stock M. 2021. A 180 My-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philosophical Transactions (B), 376: 1–10 (20200089).
Lebeda I., Rodina M., Gela D., Sakali S., Shivaramu S. and Flajshans M. 2021. Gonadal histology and concentration of 11-ketotesterone of meiotic gynogens confirm female heterogametic sex determination in sterlet (Acipenser ruthenus). Aquaculture International, 29: 801–811.
Nace G.W., Richards C.M. and Asher Jr. J.H. 1970. Parthenogenesis and genetic variability: I. Linkage and inbreeding estimations in the frog, Rana pipiens. Genetics, 66: 349–368.
Scribner K.T. and Kanefsky J. 2021. Molecular sexing of lake sturgeon. Journal of Great Lakes Research, 47: 934–936.
Van Eenennaam A.L. 1997. Genetic analysis the sex determination of white sturgeon (Acipenser transmontanus Richardson). Ph.D. Thesis, University of California, USA. 177P.
Vecsei P., Litvak M.K., Noakesa D.L.G., Rienc T. and Hochleithner M. 2003. A noninvasive technique for determining sex of live North American sturgeon. Environmental Biology of Fishes, 68: 333–338.
Wuertz S., Guralp H., Psenicka M. and Chebanov M. 2018. Sex determination in sturgeon. P: 645–668. In: Wang H.P., Piferrer F., Chen S. and Shen Z.G. (Eds.). Sex Control in Aquaculture. John Wiley and Sons, Ltd., UK.
Xiao K., Du H., Hu Y., Liu X., Wang B., Yang J., Zeng Q., Chen L. and Yao J. 2021. A pioneering approach for non-invasive sex identification of Chinese sturgeon at an early stage. Aquaculture, 538: 736530.