Study of sublethal concentrations of paraquat herbicide on tissue and kidney factors of Barbus sharpeyi

Document Type : Research Paper

Author

Assistant Professor in Department of Marine Biology, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran

10.22124/japb.2023.24617.1498

Abstract

According to high solubility and frequent use of paraquat, large amounts of it can penetrate into surface waters through runoff and have destructive effects on living organisms. Therefore, in the present study, the toxic effects of paraquat on the kidney and the its functional factors, including creatinine, urea, and uric acid, were investigated in benny fish (Barbus sharpeyi). 40 benny fish were divided into 4 treatments including 0% (control, t0), 25% (t1), 50% (t2) and 75% (t3) paraquat lethal concentration (0, 0.38, 0.76, and 1.14mg/L, respectively). After 96 hours of exposure, kidney tissue samples were taken for tissue studies and blood serum sampled to check changes in kidney functional factors. Injuries such as shriveling of glomerulus and renal tubules, hyperemia, destruction of tubule epithelium, dilation of urinary space and decrease in the lumen diameter of urinary tubules were seen in exposure to paraquat. Creatinine in groups t2 and t3 and uric acid in t1 showed significant changes compared to the control group (P<0.05). As the concentration increased, paraquat caused more severe and widespread damage in the kidney. The results showed severe destruction of kidney tissue in the group t3, and as a result, creatinine also increased.

Keywords


Badroo I.A., Nandurkar H.P. and Khanday A.H. 2020. Toxicological impacts of herbicide paraquat dichloride on histological profile (gills, liver, and kidney) of freshwater fish Channa punctatus (Bloch). Environmental Science and Pollution Research, 27: 39054–39067. doi: 10.1007/s11356-020-09931-6
Ballesteros M.L., Wunderlin D.A. and Bistoni M.A. 2009. Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicology and Environmental Safety, 72(1): 199–205. doi: 10.1016/j.ecoenv.2008.01. 008
Banerjee S. and Bhattacharya S. 1994. Histopathology of kidney of Channa punctatus exposed to chronic nonlethal level of Elsan, mercury, and ammonia. Ecotoxicology and Environmental Safety, 29(3): 265–275. doi: 10.101 6/0147-6513(94)90003-5
Bonilla E., Medina-Leendertz S., Villalobos V., Molero L. and Bohorquez A. 2006. Paraquat-induced oxidative stress in Drosophila melanogaster: Effects of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid. Neurochemical Research, 31: 1425–1432. doi: 10.1007/s11064-006-9194-8
Chia L.S., McRae D.G. and Thompson J.E. 1982. Light‐dependence of paraquat‐initiated membrane deterioration in bean plants. Evidence for the involvement of superoxide. Physiologia Plantarum, 56(4): 492–509. doi: 10.1111/j.1399-3054. 1982.tb04545.x
Christopher D.W., Henry I.E., Vincent C.E., Christopher C.O., Christian O.C. and Onas S.P. 2015. Physiological effects of paraquat in juvenile African catfish Clarias gariepinus (Burchell 1822). Journal of Coastal Life Medicine, 3(1): 35–43. doi: 10.12980/JCLM.3.2015JCLM-2014-0113
Cocheme H.M. and Murphy M.P. 2008. Complex I is the major site of mitochondrial superoxide production by paraquat. Journal of Biological Chemistry, 283(4): 1786–1798. doi: 10.1074/jbc.M7085 97200
Das P., Das M., Kalita A. and Chutia P. 2020. Studies on toxicological effect of the herbicide paraquat dichloride on the air breathing singhi catfish, Heteropneustes fossilis (Bloch). Proceedings of the Zoological Society, 73: 406–417. doi: 10.1007/s12595-020-00346-2
Deivasigamani S. 2015. Effect of herbicides on fish and histological evaluation of common carp (Cyprinus carpio). International Journal of Applied Research, 1(7): 437–440.
Di Marzio W.D. and Tortorelli M.C. 1994. Effects of paraquat on survival and total cholinesterase activity in fry of Cnesterodon decemmaculatus (Pisces, Poeciliidae). Bulletin of Environmental Contamination and Toxicology, 52: 274–278. doi: 10.1007/BF00198499
Dinis-Oliveira R.J., Duarte J.A., Sanchez-Navarro A., Remiao F., Bastos M.L. and Carvalho F. 2008. Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Critical Reviews in Toxicology, 38: 13–71. doi: 10.1080/104084407 01669959
Dumitrescu G., Petculescu Ciochina L., Voia S., Dronca D. and Boca L. 2010. Histological changes induced in gonads, liver and kidney of zebra fish (Danio rerio) under the effect octylphenol (OP). Animal Science and Biotechnologies, 43(1): 484–489.
Ensibi C., Perez-Lopez M., Soler Rodriguez F., Miguez-Santiyan M.P., Yahya M.N. and Hernandez-Moreno D. 2013. Effects of deltamethrin on biometric parameters and liver biomarkers in common carp (Cyprinus carpio L.). Environmental Toxicology and Pharmacology, 36: 384–391. doi: 10.1016/j.etap.2013.04.019
Farag A.M., May T., Marty G.D., Easton M., Harper D.D., Little E.E. and Cleveland L. 2006. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquatic Toxicology, 76(3-4): 246–257. doi: 10.1016/ j.aquatox.2005.09.011
Gao L., Yuan H., Xu E and Liu J. 2020. Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics. Scientific Reports, 10(1): 1–16 (1790). doi: 10.1038/ s41598-020-58599-y
Gupta Y.R., Sellegounder D., Kannan M., Deepa S., Senthilkumaran B. and Basavaraju Y. 2016. Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): Biochemical, histological and proteomic approaches. Aquaculture and Fisheries, 1: 15–23. doi: 10.1016/ j.aaf.2016.09.003
Harris C., Dixon M. and Hansen J.M. 2004. Glutathione depletion modulates methanol, formaldehyde and formate toxicity in cultured rat conceptuses. Cell Biology and Toxicology, 20: 133–145. doi: 10.1023/B:CBTO.0000029466.08607.86
Hassan M., Shah Norhan N.A., Mohd Daud H., Chong J.L., Abd Halim Shah M.M. and Karim N.U. 2015. Behavioral and histopathological changes of common carp (Cyprinus carpio) exposed to paraquat. Journal of Fisheries and Livestock Production, 3: 1–3. doi: 10.4172/ 2332-2608.1000131
He X., Wang L., Szklarz G., Bi Y. and Ma Q. 2012. Resveratrol inhibits paraquat induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway. Journal of Pharmacology and Experimental Therapeutics, 342: 81–90. doi: 10.1124/jpet.112. 194142
Ienaga K. and Yokozawa T. 2011. Creatinine and HMH (5-hydroxy-1-methylhydantoin, NZ-419) as intrinsic hydroxyl radical scavengers. Drug Discoveries and Therapeutics, 5(4): 162–175. doi: 10.5582/ddt.2011.v5.4.162
Ienaga K., Sohn M., Naiki M. and Jaffa A.A. 2014. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells. Journal of Receptors and Signal Transduction, 34(3): 195–200. doi: 10.3109/10799893.2013.876 039
Jezierska B. and Witeska M. 2006. The metal uptake and accumulation in fish living in polluted waters. Soil and Water Pollution Monitoring, Protection and Remediation, 69: 107–114. doi: 10.1007/978-1-4020-4728-2_6
Kannan C. and Kathiresan R. 2002. Herbicide control of water hyacinth and its impact on fish growth and water quality. Indian Journal of Weeds Science, 34(1-2): 92–95.
Koohkan O., Abdi R., Salighehzadeh R. and Jaddi Y. 2014. Histopathological study on sub-acute toxicity of paraquat on liver of benny fish fingerling (Barbus sharpeyi) (In Persian). Journal of Comparative Pathobiology, 11 (1): 1167–1172.
Koohkan O., Morovvati H. and Taheri Mirghaed A. 2024. Histomorphological study and biochemical changes in kidney of gray mullet (Mugil cephalus) exposed to iron oxide nanoparticles and Spirulina platensis. Iranian Veterinary Journal, 19(4): 120–131. doi: 10.22055/IVJ.2022.328211. 2442
Marin-Morales M.A., Ventura-Camargo B.D. and Hoshina M.M. 2013. Toxicity of herbicides: Impact on aquatic and soil biota and human health. Herbicides-Current Research and Case Studies in Use, 10: 399–443. doi: 10.5772/55851
Morovvati H., Abdi R. and Shamsi M.M. 2017. Effect of different salinity concentration on kidney of benni, Barbus sharpeyi. Iranian Scientific Fisheries Journal, 25(5): 159–164. doi: 10.22092/ISFJ.2017. 110322
Norhan N.A., Zakariah M.I., Karim N.U., Daud H.M., Melad A.A., Yusoff N.A. and Hassan M.A. 2022. Paraquat-induced histo-pathological changes on the gills, kidney and liver tissues of Anabas testudineus (Bloch, 1792). Journal of Sustainability Science and Management, 17: 165–174. doi: 10.46754/jssm.2022.08.010
Nwani C.D., Ama U.I., Okoh F., Oji U.O., Ogbonyealu R.C., Agha-Ibiam A. and Udo-Ibiam O. 2013. Acute toxicity of the chloro-acetanilide herbicide butachlor and its effects on the behavior of the freshwater fish Tilapia zillii. African Journal of Biotechnology, 12: 499–503. doi: 10.5897/AJB12. 2433
Palermo F.F., Risso W.E., Simonato J.D. and Martinez C.B. 2015. Bioaccumulation of nickel and its biochemical and genotoxic effects on juveniles of the neotropical            fish Prochilodus lineatus. Ecotoxicology and Environmental Safety, 116: 19–28. doi: 10.1016/ j.ecoenv.2015.02.032
Patnaik B.B., Howrelia H., Mathews T. and Selvanayagam M. 2011. Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. African Journal of Biotechnology, 10(57): 12218–12223. doi: 10.5897/AJB10.1910
Rahman M.Z., Hossain Z.M., Ellah M.F.R. and Ahmed G.U. 2002. Effect of diazinon 60 EC on Anabas testudineus, Channa punctatus and Barbodes gonionotus. NAGA, 25: 8–11.
Safi S., Mojabi A., Atyabi N., Khaki Z., Khajeh G.H., Saberi Shakib J., Mohammad Sadegh M., Khazraeinia P., Nazifi Habib Ababdi S., Mehri M., Rashidinia M.R. and Pourkabir M. 2011. Veterinary Clinical Biochemistry (In Persian). Nourbakhsh Press, Iran. 512P.
Sayrafi R., Najafi G., Rahmati-Holasoo H. and Ghadam M. 2011. Histological study of hepatopancreas in hi fin pangasius (Pangasius sanitwongsei). African Journal of Biotechnology, 10(17): 34–63. doi: 10.5897/AJB10.1054
Shi Y., Liu Z., Shen Y. and Zhu H. 2018. A novel perspective linkage between kidney function and Alzheimer’s disease. Frontiers in Cellular Neuroscience, 29(12): 1–8. doi: 10.3389/fncel.2018.00384
Thophon S., Kruatrachue M., Upatham E.S., Pokethitiyook              P., Sahaphong S. and Jaritkhuan S. 2003. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environmental Pollution, 121(3): 307–320. doi: 10.1016/S0269-7491(02)00270-1
Tortorelli M.C., Hernandez D.A., Rey Vazquez G. and Salibian A. 1990. Effects of paraquat on mortality and cardiorespiratory function of catfish fry Plecostomus commersoni. Archives of Environmental Contamination and Toxicology, 19: 523–529. doi: 10.1007/BF01059071
Tsai W.T. 2013. A review on environmental exposure and health risks of herbicide paraquat. Environmental Toxicology and Chemistry, 95: 197–206. doi: 10.1080/02772248.2012.761999
Yeganeh S., Adel M., Ahmadvand S., Ahmadvand S. and Velisek J. 2016. Toxicity of organic selenium (Selemax) and its effects on haematological and biochemical parameters and histopathological changes of common carp (Cyprinus carpio L., 1758). Toxin Reviews, 35(3-4): 207–213. doi: 10.1080/ 15569543.2016.1213749