The effect of feeding with different levels of Spirulina platensis on growth indices and carcass composition of freshwater bivalve mussel (Anodonta cygnea)

Document Type : Research Paper

Authors

1 M.Sc. in Aquaculture, Fisheries Department, Faculty of Natural Resources, University of Guilan, Soumae-Sera, Iran

2 Associate Professor in Fisheries Department, Faculty of Natural Resources, University of Guilan, Soumae-Sera, Iran

3 Professor in Fisheries Department, Faculty of Natural Resources, University of Guilan, Soume-Sera, Iran

4 Professor in Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran

10.22124/japb.2023.24701.1500

Abstract

The present study was conducted in order to investigate the effect of different levels of Spirulina platensis on the growth performance and composition of Anodonta cygnea carcass. These mussels were caught from Selka area of ​​Anzali lagoon and transferred to the laboratory. After acclimatization, 72 mussels (6 per replicate) with an average weight of 55.80±3.26g were distributed among twelve 3-liter plastic tanks filled with well water. Mussels, during 16 weeks, were fed with four different diets including C: control (green water produced with well water), T1: 70% green water + 30% Spirulina powder solution, T2: 40% green water + 60% Spirulina powder solution and T3: 100 mL Spirulina powder solution. During the feeding period, water temperature was recorded as 17.51±0.45°C. After 8 and 16 weeks, 3 mussels from each tank (replicate) were collected to measure carcass composition including protein, fat, moisture and ash contents. Based on the results, no significant difference was observed in growth indices. Examining the proximate composition of the carcass in week 8 showed the percentage of protein at the beginning of the experiment was significantly lower than T2 and T3 treatments (P<0.05). No significant difference was observed between the amounts of fat and ash in different treatments (P>0.05). The amount of moisture in the control treatment was significantly lower than the other treatments (P<0.05). Also, after the end of the feeding period (16 weeks), the protein, fat, dry matter and ash contents ​​were significantly more than the beginning of experiment (P<0.05). In conclusion, according to the obtained results, it is recommended to use Spirulina in the diet of Anodonta mussel due to its effect on increasing the amount of carcass protein.

Keywords

Main Subjects


 Allaf Noverian H., Moosapour M. and Moloodi Siahmazgi S.M. 2022. The effect of different salinity on growth performance, survival and environmental shock on Anzali wetland freshwater mussel (Anodonta cygnea). Aquatic Physiology and Biotechnology, 9(4): 21–34. doi: 10.22124/JAPB.2021.17990.1399
AOAC. 2005. Official Methods of Analyses of the Association of Analytical Chemists. Association of Official Agricultural Chemists, USA. P: 24–39.
Arney B., Liu W., Forster I.P., McKinley R.S. and Pearce C.M. 2015. Feasibility of dietary substitution of live microalgae with spray-dried Schizochytrium sp. or Spirulina in the hatchery culture of juveniles of the Pacific geoduck clam (Panopea generosa). Aquaculture, 444: 117–133. doi: 10.1016/j.aquaculture.2015.02.014
Bascinar N.S., Duzgunes E., Misir D.S., Polat H. and Zengin B. 2009. Growth and flesh yield of the swan mussel [Anodonta cygnea (Linnaeus, 1758)] (Bivalvia: Unionidae) in Lake Cildir (Kars, Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 9: 127–132. doi: 10.4194/trjfas.2009. 0201
Bene C., Barange M., Subasinghe R., Pinstrup-Andersen P., Merino G., Hemre G.I. and Williams M. 2015. Feeding 9 billion by 2050-Putting fish back on the menu. Food Security, 7: 261–274. doi: 10.1007/s12571-015-0427-z
Brown M. and Robert R. 2002. Preparation and assessment of microalgal concentrates as feeds for larval and juvenile Pacific oyster (Crassostrea gigas). Aquaculture, 207: 289–309. doi: 10.1016/S0044-8486(01)00742-6
Carvalho F., Lima P., Goncalves F., Russel-Pinto F. and Machado J. 2004. Development of suitable maintenance diet for Anodonta cygnea. Journal of the World Aquaculture Society, 35: 189–198. doi: 10.1111/j.1749-7345.2004.tb0107 4.x
Chen J.Q., Haws M.C., Fong Q.S. and Leung P. 2017. Economic feasibility of producing oysters using a small-scale Hawaiian fishpond model. Aquaculture Reports, 5: 41–51. doi: 10.1016/j.aq rep.2016.12.001
Chen Q., Jiang X., Han Q., Sheng P., Chai Y., Peng R., Jiang M., Mao Z. and Wu S. 2021. Growth, calcium content, proximate composition, and fatty acid composition of triangle sail mussel (Hyriopsis cumingii) fed five different microalgal diets. Aquaculture, 530: 1–12 (735719). doi: 10.1016/j.aquaculture.2020.735719
Chen X., Liu H., Su Y. and Yang J. 2015. Morphological development and growth of the freshwater mussel Anodonta woodiana from early juvenile to adult. Invertebrate Reproduction and Development, 59: 131–140. doi: 10.1080/0792425 9.2015.1047039
Chen X., Zhang M., Zhang J., Bai Z. and Li J. 2019. miR-4504 is involved in nacre color formation in Hyriopsis cumingii. Biochemical and Biophysical Research Communications, 517: 210–215. doi: 10.5555/20193409118
Chojnacki J., Lewandowska A. and Rosinska B. 2007. Biometrics of the mussel Anodonta cygnea  (L.) inhabiting in 2005 the Binowo and Bobolin Lakes near Szczecin. Oceanological and Hydrobiological Studies, 36: 21–27. doi: 10.2478/v10009-007-0017-2
Da Costa F., Petton B., Mingant C., Bougaran G., Rouxel C., Quere C., Wikfors G.H., Soudant P. and Robert R. 2016. Influence of one selected Tisochrysis lutea strain rich in lipids on Crassostrea gigas larval development and biochemical composition. Aquaculture Nutrition, 22: 813–836. doi: 10.1111/anu.12301
Edwards P., Zhang W., Belton B. and Little D.C. 2019. Misunderstandings, myths and mantras in aquaculture: Its contribution to world food supplies has been systematically over reported. Marine Policy. 106: 103–134. doi: 10.1016/j.marpol.2019.103 547
Espinosa E.P., Perrigault M., Ward J.E., Shumway S.E. and Allam B. 2010. Microalgal cell surface carbohydrates as recognition sites for particle sorting in suspension-feeding bivalves. The Biological Bulletin, 218: 75–86. doi: 10.1086/ BBLv218n1p75
FAO 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO, Italy. 266P.
Gao Q.F., Shin P.K., Lin G.H., Chen S.P. and Cheung S.G. 2006. Stable isotope and fatty acid evidence for uptake of organic waste by green-lipped mussels Perna viridis in a polyculture fish farm system. Marine Ecology Progress Series, 317: 273–283. doi: 10.3354/meps317273
Golden C.D., Allison E.H., Cheung W.W.L., Dey M.M., Halpern B.S., McCauley D.J., Smith M., Vaitla B., Zeller D. and Myers S.S. 2016. Nutrition: Fall in fish catch threatens human health. Nature, 534: 317–320.
Gonzalez-Araya R., Quillien V. and Robert R. 2013. The effects of eight single microalgal diets on sex-ratio and gonad development throughout European flat oyster (Ostrea edulis L.) conditioning. Aquaculture, 400: 1–5. doi: 10.10 16/j.aquaculture.2013.02.036
Gouda R., Kenchington E., Hatcher B. and Vercaemer B. 2006. Effects of locally-isolated micro-phytoplankton diets on growth and survival of sea scallop (Placopecten magellanicus) larvae. Aquaculture, 259: 169–180. doi: 10.1016/j.aquaculture.2006.03.050
Guedes A.C. and Malcata F.X. 2012. Nutritional value and uses of microalgae in aquaculture. P: 59–78. In: Muchlisin Z. (Ed.). Aquaculture. IntechOpen, UK. doi: 10.5772/30576
Hallstrom E., Bergman K., Mifflin K., Parker R., Tyedmers P., Troell M. and Ziegler F. 2019. Combined climate and nutritional performance of seafoods. Journal of Cleaner Production, 230: 402–411. doi: 10.1016/j.jclepro.2019.04. 229
Holman B.W.B. and Malau-Aduli A.E.O. 2013. Spirulina as a livestock supplement and animal feed. Journal of Animal Physiology and Animal Nutrition, 97: 615–623. doi: 10.1111/j.1439-0396.2012.0 1328.x
Islam H., Alamin M., Hasan M.S., Mondal S. and Hossain M.M.M. 2017. Fish culture in indoor-tank using green water technology. Journal of Entomology Zoology Studies, 5: 2498–2502. doi: 10.222 71/j.ento.2017.v5.i6ah.2901
Katiyar R. and Arora A. 2020. Health promoting functional lipids from microalgae pool: A review. Algal Research, 46: 1–15. (101800). doi: 10.1016/j.algal.2020. 101800
Kiibus M. and Kautsky N. 1996. Respiration, nutrient excretion and filtration rate of tropical freshwater mussels and their contribution to production and energy flow in Lake Kariba, Zimbabwe. Hydrobiologia, 331: 25–32. doi: 10.1007/BF00025404
Laing I. and Millican P.F. 1992. Indoor nursery cultivation of juvenile bivalve molluscs using diets of dried algae. Aquaculture, 102: 231–243. doi: 10.1016/0044-8486(92)90151-A
Langdon C. and Onal E. 1999. Replacement of living microalgae with spray-dried diets for the marine mussel Mytilus galloprovincialis. Aquaculture, 180: 283–294. doi: 10.1016/S0044-8486(99)00197-0
Leonardos N. and Lucas I.A. 2000. The nutritional value of algae grown under different culture conditions for Mytilus edulis L. larvae. Aquaculture. 182: 301–315. doi: 10.1016/S0044-8486(99)00269-0
Lu J. and Takeuchi T. 2002. Taste of tilapia, on growth, fertility, coloration and eucocytes count Oreochromis niloticus, fed solely on raw Spirulina platensis in red swordtail, Xiphophorus helleri. Fisheries Sciences, 68: 987–988. doi: 10.2331/fishsci.68.sup1_987
Liu Y., Hao A., Iseri Y., Kuba T. and Zhang Z. 2014. A comparison of the mussel Anodonta woodiana’s acute physiological responses to different algae diets. Journal of Clean Energy Technologies, 2: 126–131. doi: 10.7763/JOCET.2014. V2.106
Martinez-Fernandez E. and Southgate P.C. 2007. Use of tropical microalgae as food for larvae of the black-lip pearl oyster Pinctada margaritifera. Aquaculture, 263: 220–226. doi: 10.1016/j.aquaculture.2006.09.040
Mele I., McGill R.A., Thompson J., Fennell J. and Fitzer S. 2023. Ocean acidification, warming and feeding impacts on bio-mineralization pathways and shell material properties of Magallana gigas and Mytilus spp. Marine Environmental Research, 186: 1–8 (10592). doi: 10.1016/j.marenvres.20 23.105925
Packer M.A., Harris G.C. and Adams S.L. 2016. Food and feed applications of algae. P: 217–247. In: Bux F. and Chisti Y. (Eds.). Algae Biotechnology. Springer, Switzerland. doi: 10.1007/978-3-31 9-12334-9_12
Pettersen A.K., Turchini G.M., Jahangard S., Ingram B.A. and Sherman C.D. 2010. Effects of different dietary microalgae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture, 309(1-4): 115–124. doi: 10.1016/j.aquacultu re.2010.09.024
Plaza M., Santoyo S., Jaime L., Reina G.G.B., Herrero M., Senorans F.J. and Ibanez E. 2010. Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51: 450–455.‏ doi: 10.10 16/j.jpba.2009.03.016
Pleissner D., Eriksen N.T., Lundgreen K. and Riisgard H.U. 2012. Biomass composition of blue mussels, Mytilus edulis, is affected by living site and species of ingested microalgae. International Scholarly Research Notices, 2012: 1–12. doi: 10.5402/2012/902152
Prado P., Cabanes P., Catanese G., Carella F., Carrasco N., Grau A., Hernandis S., Garcia-March J.R., Tena J., Caiola N. and Andree K.B. 2020. Growth of juvenile Pinna nobilis in captivity conditions: Dietary and pathological constraints. Aquaculture, 522: 1–15 (735167). doi: 10.1016/j.aquaculture.2020.7351 67
Priyadarshani I. and Rath B. 2012. Commercial and industrial applications of micro algae- A review. Journal of Algal Biomass Utilization, 3(4): 89–100.
Rodhouse P.G., Roden C. and Somerville-Jacklin M.E. 1983. Nutritional value of micro-algal mass cultures to the oyster Ostrea edulis L. Aquaculture, 32: 11–18. doi: 10.1016/0044-8486(83)90265-X
Ronquillo J.D., Siasho T. and McKinley R. 2006. Early developmental stages of green tiger prawn (Peneaus semisulcatus) de Haan. Aquatic Sciences, 560: 175–196. doi: 10.1007/s10750-005-1448-y
Rosa M., Ward J.E., Shumway S.E., Wikfors G.H., Pales-Espinosa E. and Allam B. 2013. Effects of particle surface properties on feeding selectivity in the eastern oyster Crassostrea virginica and the blue mussel Mytilus edulis. Journal of Experimental Marine Biology and Ecology, 446: 320–327. doi: 10.1016/j.jembe.2013.05. 011
Salavatian S., Valipour A., Jamili S., Sayyad Borani M., Ehteshamei F., Ghorbani S.A., Fallahi Kapourchali M., Parvaneh Mogaddam D., Amiri Sendesi S.A., Ramzani Mamodani M.R., Jamalzad Fallah F and Mahisefat  F. 2019. The study of food dietary Anodonta cygnea in Anzali Wetland. Iranian Scientific Fisheries Journal, 28: 79–94. doi: 10.22092/ISFJ.2019.118891
Schulze P. S., Hulatt C.J., Morales-Sanchez D., Wijffels R.H. and Kiron V. 2019. Fatty acids and proteins from marine cold adapted microalgae for biotechnology. Algal Research, 42: 1–9 (101604). doi: 10.1016/j.algal.2019.101604
Shanmugam S., Mathimani T., Anto S., Sudhakar M.P., Kumar S.S. and Pugazhendhi A. 2020. Cell density, lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresource Technology, 304: 1–4 (123061). doi: 10.1016/j.biortech.2020.123061
Stromgren T. and Cary C. 1984. Growth in length of Mytilus edulis L. fed on different algal diets. Journal of Experimental Marine Biology and Ecology, 76: 23–34. doi: 10.1016/0022-0981(84)90014-5
Tacon A.G.J. 2020. Trends in global aquaculture and aquafeed production: 2000-2017. Reviews in Fisheries Science and Aquaculture, 28: 43–56. doi: 10.1080/23308249.20 19.1649634
Tremblay R., Cartier S., Miner P., Pernet F., Quere C., Moal J., Muzellec M.L., Mazuret M. and Samain J.F. 2007. Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture, 262: 410–418. doi: 10.1016/j.aquacu lture.2006.10.009
Troell M., Naylor R.L., Metian M., Beveridge M., Tyedmers P.H., Folke C., Arrow K.J., Barrett S., Crepin A.S., Ehrlich P.R. and Gren A. 2014. Does aquaculture add resilience to the global food system? Proceedings of the National Academy of Sciences of the United States of America, 111: 13257–13263. doi: 10/1037/pnas.14 04067111
Vakily J.M. 1992. Determination and comparison of bivalve growth rate with emphasis on Thailand and other tropical areas. International Center for Living Aquatic Resources Management, Philippines. 125P.
Vaughn C.C., Nichols S.J. and Spooner D.E. 2008. Community and food web ecology of freshwater mussels. Journal of the North American Benthological Society, 27(2): 41–55. doi: 10.1899/ 07-058.1
Vidhya K., Uthayakumar V., Muthukumar S., Munirasu S. and Ramasubramanian V. 2014. The effects of mixed algal diets on population growth, egg productivity and nutritional profiles in cyclopoid copepods (Thermocyclops hyalinus and Mesocyclops aspericornis). The Journal of Basic and Applied Zoology, 67: 58–65. doi: 10.1016/ j.jobaz.2014.08.003
Wassnig M. and Southgate P.C. 2016. The effects of stocking density and ration on survival and growth of winged pearl oyster (Pteria penguin) larvae fed commercially available micro-algae concentrates. Aquaculture Reports, 4: 17–21. doi: 10.1016/j.aq rep.2016.05.004
Wong W.H. and Levinton J.S. 2004. Culture of the blue mussel Mytilus edulis (Linnaeus, 1758) fed both phytoplankton and zooplankton: A microcosm experiment. Aquaculture Research. 35: 965–969. doi: 10.1111/j.1365-2109.2004. 01107.x
Xu J., Zhou H., Yan X., Zhou C., Zhu P. and Ma B. 2012. Effect of unialgal diets on the composition of fatty acids and sterols in juvenile ark shell Tegillarca granosa Linnaeus. Journal of Agricultural and Food Chemistry, 60: 3973–3980. doi: 10.1021/jf300620e
Yang C., Hao R., Du X., Wang Q., Deng Y. and Sun R. 2019. Response to different dietary carbohydrate and protein levels of pearl oysters (Pinctada fucata martensii) as revealed by GC-TOF/MS-based metabolomics. Science of the Total Environment, 650: 2614–2623. doi: 10.1016/j.scito tenv.2018.10.023
Zhu A., Chen W., Luan J., Liu J. and Liang S. 2006. A study on feeding habits and ingestion rate of Hyriopsis cumingii (in Chinese). Acta Hydrobiologica Sinica, 30(2): 244–246.