Extraction, purification and structural identification of the halophilic microalgae Cyanothece sp. and evaluation of its antibacterial activity

Document Type : Research Paper

Authors

1 Assistant Professor in Department of Biotechnology, Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran

2 Ph.D. in Aquatic Health, Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran

3 M.Sc. in Department of Ecology, Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran

4 .Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar‐e‐Lengeh, Iran

10.22124/japb.2024.28244.1551

Abstract

This study aimed to extract, characterize and evaluate the antibacterial activity of the polysaccharide derived from the halophilic microalga Cyanothece sp. The strain was cultivated under laboratory conditions, and the resulting biomass was harvested. The polysaccharide extraction process was optimized by investigating the effects of extraction temperature (40, 60 and 80°C) and time (60, 120 and 180 minutes). Following initial extraction, the crude polysaccharide was purified using chromatographic techniques, specifically gel filtration chromatography. Physicochemical characteristics, including homogeneity, molecular weight and monosaccharide composition, were determined. Antibacterial efficacy was assessed in vitro using the disk diffusion method. The results indicated that the optimal extraction yield was achieved at 80°C over a duration of 180 minutes. The purified polysaccharide exhibited a molecular weight of 103kD. The monosaccharide profiling revealed a complex structure comprising rhamnose, fucose, xylose, mannose, glucose, galactose, glucuronic acid and galacturonic acid, present in the following molar ratios: 1.7, 0.8, 1.0, 3.2, 6.1, 4.5, 5.0 and 6.0%, respectively. Also, the extracted polysaccharide significantly inhibited the growth of Escherichia coli and Staphylococcus aureus bacteria (P<0.05). Based on these findings, the polysaccharide derived from Cyanothece sp. possesses promising antimicrobial properties and warrants further investigation as a potential candidate for pharmaceutical and nutraceutical applications.

Keywords

Main Subjects


 Aminikhoei Z., Erfanifar E., Azhdari A. and Abir S. 2022. Investigation the effects of different salinities on valuable pigments of halophyte microalgae Cyanothece sp. isolated from back barrier Lipar (Chabahar) in laboratory conditions. Iranian Scientific Fisheries Journal, 30(5): 121–133. doi: 10.22092/isfj
Bandyopadhyay A., Elvitigala T., Welsh E., Stockel J., Liberton M., Min H., Sherman L.A. and Pakrasi H.B. 2011. Novel metabolic attributes of the genus Cyanothece, comprising a group             of unicellular nitrogen-fixing cyanobacteria. MBio, 2(5): 1–10 (e00214-11). doi: 10.1128/mbio.002 14-11
Ben H.M., Ben I.M., Garrab M., Aly R., Gagnon J. and Naghmouchi K. 2017. Antimicrobial, anti-oxidant, cytotoxic and anticholin-esterase activities of water-soluble polysaccharides extracted from microalgae Isochrysis galbana and Nannochloropsis oculata. Journal of the Serbian Chemical Society, 82(5): 509–522. doi: 10.2298/JSC16 1016036B
Chen Jin J., Tang J., Wang Z., Wang Z., Wang J.L. and Lu J. 2011. Extraction purification characterization and hypoglycemic activity of polysaccharide isolated from the root of Ophiopogon japonicas. Carbohydrate Polymer, 83(2): 749–754. doi: 10.1016/j.carb pol.2010.08.050
Costa J.A.V., Lucas B.F., Alvarenga A.G.P., Moreira J.B. and de Morais M.G. 2021. Microalgae polysaccharides: An overview             of production, characterization, and potential applications. Polysaccharides, 2(4): 759–772. doi: 10.3390/polysaccharides2040046
De Philippis R., Margheri M.C., Pelosi E. and Ventura S. 1993. Exopolysaccharide production by    a unicellular cyanobacterium isolated from a hypersaline habitat. Journal of Applied Phycology, 5: 387–394.
Jahanbin K., Abbasian A. and Ahang M. 2017. Isolation, purification and structural characterization of a new water-soluble polysaccharide from Eremurus stenophyllus (Boiss. & Buhse) Baker roots. Carbohydrate Polymers, 178: 386–393. doi: 10.10 16/j.carbpol.2017.09.058
Komarek J. and Cepak V. 1998. Cytomorphological characters supporting the taxonomic validity of Cyanothece (Cyanoprokaryota). Plant Systematics and Evolution, 210: 25–39. doi: 10.1007/BF009847 25
Laroche C. 2022. Exopolysaccharides from microalgae and cyano-bacteria: Diversity of strains, production strategies, and applications. Marine Drugs, 20(5): 1–43 (336). doi: 10.3390/md200503 36
Liberman G.N., Ochbaum G., Arad S.M. and Bitton R. 2016. The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions. Carbohydrate Polymers, 152: 658–664. doi: 10.1016/j.carbpol.2016.07.0 25
Madsen M.A., Semerdzhiev S., Twigg J.D., Moss C., Bavington C.D. and Amtmann A. 2023. Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803. Applied Microbiology and Biotechnology, 107(19): 6121–6134. doi: 10.1007/s00253-023-1269 7-9
Miranda-Arizmendi V., Fimbres-Olivarria D., Miranda-Baeza A., Martinez-Robinson K., Rascon-Chu A., De Anda-Flores Y., Lizardi-Mendoza J., Mendez-Encinas M.A., Brown-Bojorquez F. and Canett-Romero R. 2022. Sulfated polysaccharides from Chaetoceros muelleri: macromolecular characteristics and bioactive properties. Biology, 11(10): 1–13 (1476). doi: 10.3390/ biology11101476
Moreira J.B., Da Silva Vaz B., Cardias B.B., Cruz C.G., De Almeida A.C.A., Costa J.A.V. and De Morais M.G. 2022. Microalgae polysaccharides: An alternative source for food production and sustainable agriculture. Polysaccharides, 3(2): 441–457. doi: 10.3390/polysaccharid es3020027
Ohki K., Le N.Q.T., Yoshikawa S., Kanesaki Y., Okajima M., Kaneko T. and Thi T.H. 2014. Exopolysaccharide production by a unicellular freshwater cyano-bacterium Cyanothece sp. isolated from a rice field in Vietnam. Journal of Applied Phycology, 26: 265–272. doi: 10.1007/s10811-013-0094-4
Oren A. 2015. Cyanobacteria in hyper saline environments: Biodiversity and physiological properties. Biodiversity and Conservation, 24: 781–798. doi: 10.1007/s10531-015-0882-z
Prybylski N., Toucheteau C., El Alaoui H., Bridiau N., Maugard T., Abdelkafi S., Fendri I., Delattre C., Dubessay P. and Pierre G. 2020. Bioactive polysaccharides from microalgae. P: 533–571. In:  Jacob-Lopes E., Maroneze M.M., Queiroz M.I. and Zepka L.Q. (Eds.). Handbook of Microalgae-Based Processes and Products. Academic Press, USA. doi: 10.1016/B978-0-12-818536-0.00 020-8
Rosen B.H. and Mares J. 2016. Catalog of microscopic organisms of the Everglades, Part 1- The cyanobacteria. Open-File Report-1114. U.S. Geological Survey, USA. 108P. doi: 10.3133/ofr201611 14
Su C., Chi Z. and Lu W. 2007. Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113. Chinese Journal of Oceanology and Limnology, 25: 411–417. doi: 10.10 07/s00343-007-0411-3
Sukhikh S., Prosekov A., Ivanova S., Maslennikov P., Andreeva A., Budenkova E., Kashirskikh E., Tcibulnikova A., Zemliakova E. and Samusev I. 2022. Identifi-cation of metabolites with anti-bacterial activities by analyzing the FTIR spectra of microalgae. Life, 12(9): 1–18 (1359). doi: 10.3390/ life12091395
Xu H., Yao L., Sun H. and Wu Y. 2009. Chemical composition and antitumor activity of different polysaccharides from the roots of Actinidia eriantha. Carbohydrate Polymers, 78: 316–322. doi: 10.101 6/j.carbpol.2009.04.007