برآورد نسبی پتانسیل‌های ژنتیکی خنثی و تنوع سازشی در جمعیت‌های پرورشی کپور نقره‌ای (Hypophthalmichthys molitrix) کشور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیلات، گروه شیلات، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

2 استاد گروه شیلات، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

3 استاد گروه ژنیتک، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

4 دانشیار سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

در دهه اخیر، مطالعه نشانگرهای خنثی در برابر انواعی که نماینده تنوع سازشی هستند مورد اقبال قرار گرفته است که شاخص­ترین آن‌ها، مجموعه ژن‌های MHC است. در مطالعه حاضر نشانگر MHC به همراه 8 نشانگر ریزماهواره بر روی 138 قطعه کپور نقره­ای در استان­های مختلف کشور شامل گلستان، مازندران، گیلان، خوزستان و نمونه‌های وارداتی از کشور چین، مورد بررسی قرار­ گرفت. میانگین غنای اللی، هتروزیگوسیتی مورد ­انتظار و شاخص شانون به ترتیب برای ریزماهواره­ها 04/5، 682/0 و 32/ 1 و جایگاه MHC 21/4، 674/0 و 23/1 به دست آمد. آنالیز AMOVA در جایگاه­های ریزماهواره و MHC به ترتیب 2 و 3 درصد از واریانس تنوع ژنتیکی را به تفاوت­های بین­جمعیتی اختصاص­داد. با اجرای آزمون وضعیت تعادل در جمعیت­های مورد مطالعه با استفاده از مدل SMM، بروز تنگنای ژنتیکی تایید نشد. با توجه به افزایش معنی­دار هتروزیگوسیتی در هر دو نوع جایگاه در مقایسه با مدل هاردی- وینبرگ و برتری نسبی MHC در ایجاد تمایز بین جمعیت­ها می­توان نقش به‌گزینی تعادلی را به این جایگاه نسبت­داد. جمع­بندی نهایی مبین آن است که تنوع اللی جایگاه­های مذکور در جمعیت­های مورد بررسی طی چندین دوره تکثیر و پرورش حفظ شده­ است. غنای اللی بالاتر جایگاه MHC-DAB در میان نمونه­های چینی در کنار سطح هتروزیگوسیتی و تنوع بالای درون­جمعیتی می­تواند به­عنوان نقطه­قوت این گروه به­شمار­آید.

کلیدواژه‌ها


خسرویانی ک.، کلباسی م. و صادقی­زاده م. 1394. ارزیابی ژن MHC-class IIα در ماهی آزاد دریای­خزر (Salmo trutta caspius) به روش SSCP. فصلنامه محیط زیست جانوری، 7(1): 13-7.

درافشان س.، کلباسی م.، پورکاظمی م. و مجازی­امیری ب. 1389. کاربرد نشانگر ریزماهواره در بررسی صحت آمیخته­گری بین دو گونه اقتصادی آزادماهیان ایران. مجله زیست­شناسی ایران، 23(1): 93-85.

سیدمرتضایی س.ر.، جُرفی ا. و جافریان ا. 1384. ارزیابی مدیریت ژنتیکی در کارگاه­های تکثیر و پرورش ماهیان گرم­آبی جنوب و جنوب غرب ایران. مؤسسه تحقیقات علوم شیلاتی ایران. 64ص.

 

 

 

Beaumont M.A. and Nichols R.A. 1996. Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London B, 263: 1619–1626.

Bell G. and Gonzalez A. 2009. Evolutionary rescue can prevent extinction following environmental change. Ecology Letters, 12: 942–948.

Benbouza H., Jacquemin J.M., Baudoin J.P. and Meergeai G. 2006. Optimization of the reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnology, Agronomy, Society and Environment, 10: 77–81.

Brinez B., Caraballo O.X. and Salazar V.M. 2011. Genetic diversity of six populations of red hybrid tilapia, using microsatellite genetic markers. Medicina Veterinariay Zootecnia Cordoba, 16 (2): 2491–2498.

Charge R., Teplitsky C., Sorci G. and Low M. 2014. Can sexual selection theory inform genetic management of captive population? A review. Evolutionary Applications, 7: 1120–1133.

Chistiakov D.A., Hellemans B., Haley C.S., Law A.S., Tsigenopoulos C.S., Kotoulas G., Bertotto D., Libertini A. and Volckaert F.A. 2005. A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics, 170: 1821–1826.

Dionne M., Miller M.K., Dodson J.J., Caron F. and Bernatchez L. 2007. Clinial variationin MHC diversity with temperature: Evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution, 61(9): 2154–2164.

FAO. 2016. Fisheries and Aquaculture Software. FishStatJ-software for fishery statistical time series. Retrieved June, 2016, from http://www.fao.org/fishery/statistics/software/fishstatj/en.

Garrigan D. and Hedrick P.W. 2003. Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution, 57: 1707–1722.

Gheyas A.A., Cairney M., Gilmour A.E., Sattar M.A., Das T.K., McAndrew B.J., Penman D.J. and Taggart J.B. 2006. Chara-cterization of microsatellite loci in silver carp (Hypophthalmichthys molitrix) and cross-amplification in other cyprinid species. Molecular Ecology Notes, 6: 656–659.  

Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3. Retrieved January 12, 2016, from http://www.unil.ch/izea/softwares/fstat.html.

Grimholt U., Larsen S., Nordmo R., Midtlyng P., Kjoglum S., Storset A., Saebo S. and Stet R.J.M. 2003. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics, 55: 210–219.

Hedrick P.W. 1999. Balancing selection and MHC. Genetica, 104: 207–214.

Hillis D.M., Moritz C. and Mable B.K. 1996. Molecular Systematics. Sinauer Associates, Sunderland. 655P.

Kalbassi M.R., Abdollahzadeh E. and Salari-Joo H. 2012. A review on aquaculture development in Iran. Journal of Ecopersia, 1(2): 159–178.

Karaiskou N., Moran P., Georgitsakis G. and Abatzopoulos T.J. 2010. High allelic variation of MHC class II alpha antigen and the role of selection in wild and cultured Sparus aurata populations. Hydrobiologia, 638: 11–20.

Kelley J., Walter L. and Trowsdale J. 2005. Comparative genomics of major histocompatibility complexes. Immunogenetics, 56: 683–695.

Klein J., Bontrop R.E., Dawkins R.L., Erlich H.A., Gyllensten U.B., Heise E.R., Jones P.P., Parham P., Wakeland E.K. and Watkins D.I. 1990. Nomenclature for the major histocompatibility complexes of different species: A proposal. Immunogenetics, 31(4): 217–219.

Kumari N., Thakur S.K., Kumar D. and Kumari K. 2015. Single strandconformation polymorphism (SSCP)-A Review. Indian Research Journal of Genetic and Biotechnology, 7(1): 27–34.

Li S.F., Xu J.W., Yang Q.L., Wang C.H., Chapman D.C. and Lu G. 2011. Significant genetic differentiation between native and introduced silver carp (Hypophthalmichthys molitrix) inferred from mtDNA analysis. Environmental Biology of Fishes, 92: 503–511.

Liao M., Yang G., Wang X., Wang D., Zou G. and Wei Q. 2007. Development of microsatellite DNA markers of silver carp (Hypophthalmichthys molitrix) and their cross-species application in bighead carp (Aristichthys nobilis). Molecular Ecology Notes, 7: 95–99.  

Luikart G. and Cornuet J.M. 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12: 228–237.

Mahmoudi B., Esteghamat O., Sharhriyar A. and Babayev S.M. 2012. Genetic characterization and bottleneck analysis of Korbi Jobnub Khorasan goats by microsatellite markers. Journal of Cellular and Mollecular Ecology, 10: 61–69.

Manuel V., Sourinejad I., Bouza C., Vilas R., Pino-Querido A.,  Kalbassi M.R. and Martinez P. 2010. Phylogeography, genetic structure, and conservation of the endangered Caspian brown trout, Salmo trutta caspius (Kessler, 1877), from Iran. Hydrobiologia, 664(1): 51–67.

Mei X.P., Xiao M.Y. and Jin G.T. 2015. The microsatellite analysis ofgenetic diversity of five silver carp populations in the three Gorges reservoir of the Yangtze River. ACTA Hydrobiologica Sinica, 39(5): 869–876.

Peakall R. and Smouse P.E. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537–2539.

Piertney S.B. and Oliver M.K. 2006.The evolutionary ecology of the major histocompatibility complex. Heredity, 96: 7–21.

Reed D.H. and Frankham R. 2003. Correlation between fitness and genetic diversity. Conservation Biology, 17: 230–237.

Shirangi A., Kalbassi M.R. and Dorafshan S. 2010. Microsatellite polymorphism reveals low genetic differentiation between fall and spring migratory forms of endangered Caspian trout, Salmo trutta caspius (Kessler, 1870). Caspian Journal of Environmental Sciences, 9(1): 9–16.

Sourinejad I., Kalbassi M.R. and Martinez P. 2015. Mixed milt fertilization of endangered Caspian brown trout Salmo trutta caspius influences effective population size of breeders. Iranian Journal of Fisheries Sciences, 14(2): 393–408.

Spielman D., Brook B.W. and Frankham R. 2004. Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America, 101(42): 15261–15264.

Thiruvenkadan A.K., Jayakumar V., Kathiravan P. and Saravanan R. 2014. Genetic architecture and bottleneck ana-lyses of Salem Black goat breed based on microsatellite markers. Veterinary World, 7: 733–737.

Wang C.Z., Liang H.W., Zou G.W., Luo X.Z., Li Z., Tian H. and Hu G.F. 2008. Genetic variation ana-lysis of two silver carp populations in the middle and upper Yangtze River by microsatellite. Yi Chuan, 30(10): 1341–1348.

Waples R.S. 2015. Testing for Hardy-Weinberg proportion: Have we lost the plot? Journal of Heredity, 106(1): 1–19.

Wei F., ZhiZhi L., Sifa L., XueSong L., WenQiao T. and JinQuan Y. 2012. The analysis of genetic variation among Yangtze River and introduced populations from America and Hungary of silver carp (Hypophthalmichthys molitrix) by major histocompatibility complex (MHC). Journal of Shanghai Ocean University, 21(5): 684–692.

Weir B. and Cockerham C. 1984. Estimating F statistics for the analysis of population structure. Evolution, 38 (6): 1358–1370.

Wright S. 1978. Evolution and the genetics of population’s variability within and among natural populations. University of Chicago Press, Chicago. 590P.

YehF.C.,YangR.C.andBoyleT. 1999. POPGENE version 1.32, Available from: http://www.ualber ta.ca/~fyeh/.

Yu H., Tan S., Zhao H. and Li H. 2013. MH-DAB gene poly-morphism and disease resistance to Flavobacterium columnare in grass carp (Ctenopharyngodon idellus). Gene, 526: 217–222.