اثر مواد ضدیخ گلیسرول، اتیلن‌گلیکول و استامید بر میزان تفریخ جنین ماهی کپور معمولی (Cyprinus carpio)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی- دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

انجماد جنین ماهیان با جایگزین کردن مواد مقاوم در برابر یخ زدگی با آب درون جنین امکان پذیر است. آگاهی از سمیت و آثار منفی مواد  ضد انجماد یکی از ضروری­ترین پیش­نیازها در طراحی دستورالعمل انجماد جنین است. در این پژوهش جنین ماهی کپور معمولی در دو مرحله تکوین جنینی شامل روخزیدگی ناقص (8 ساعت پس از لقاح) و ضربان قلب (32 ساعت پس از لقاح) طی مدت 5 دقیقه در معرض آنزیم پروناز نوع XIV از Streptomycesgriseus قرار گرفتند. سپس جنین­های نفوذپذیر شده در مواد ضد انجماد شامل گلیسرول، اتیلن­گلیکول و استامید در غلظت­های 1، 2، 3 و 4 مولار به مدت 5 و 15 دقیقه غوطه­ور شدند. پس از آن، جنین­ها آبکشی شده و تا زمان تفریخ انکوباسیون شدند. بررسی سمیت مواد ضد انجماد از طریق محاسبه درصد تفریخ صورت گرفت. نتایج نشان داد گلیسرول نسبت به اتیلن‌گلیکول و استامید، سمیت کمتری برای جنین کپور معمولی داشت و جنین‌ها توانستند غلظت­های مختلف این ماده را به خوبی تحمل کنند. استامید بیشترین اثرات سمی را روی جنین ماهی گذاشت. با افزایش غلظت مواد ضد انجماد، درصد تفریخ کاهش یافت که علت آن می‌تواند اثر شوک اسمزی، عدم تعادل یونی و یا اثر سمی مواد ضد انجماد باشد. همچنین، افزایش زمان غوطه‌وری (از 5 به 15 دقیقه) موجب کاهش درصد تفریخ شد. با پیشرفت روند تکوینی، حساسیت جنین‌ها نسبت به مواد ضد انجماد کاهش یافت. نتایج پژوهش حاضر نشان داد گلیسرول و اتیلن­گلیکول می‌توانند مواد ضد انجماد مناسبی برای آزمایش انجماد جنین ماهی کپور معمولی در مرحله ضربان قلب باشند.

کلیدواژه‌ها


ستاری م.، شاهسونی د. و شفیعی ش. 1383. ماهی­شناسی 2 (سیستماتیک). نشر حق‌شناس. 502ص.

سوداگر م. و کیوانلو س. 1391. کاربردهای انجماد جنین در آبزیان. دومین همایش ملی منابع شیلاتی دریای خزر. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان. ص: 4-1.

کیوانلو س. و سوداگر م. 1391. تاثیر عوامل موثر

در سمیت مواد ضدانجماد در جنین ماهیان. مجله حفاظت و بهره­برداری از منابع طبیعی، 1(2): 84-73.

کیوانلو س.، حاجی‌بگلو ع.ع. و سوداگر م. 1390. مطالعات اولیه بر روی انجماد (محافظت در برابر سرما) در جنین ماهیان. دومین کنفرانس ملی علوم شیلات و آبزیان ایران. دانشگاه آزاد اسلامی واحد لاهیجان. لاهیجان. ص: 233-229.

 

 


Ahammad M.M., Bhattacharyya D. and Jana B.B. 1998. Effect of different concentrations of cryo-protectant and extender on the hatching of Indian major carp embryos (Labeo rohita, Catla catla, and Cirrhinus mrigala) stored at low temperature. Cryobiology, 37(4): 318–324.

Ahammad M.M., Bhattacharyya D. and Jana B.B. 2002. The hatching of common carp (Cyprinus carpio L.) embryos in response to exposure to different concentrations of cryo-protectant at low temperatures. Cryobiology, 44(2): 114–121.

Ahammad M.M., Bhattacharyya D. and Jana B.B. 2003. Hatching of common carp (Cyprinus carpio L.) embryos stored at 4 and -2ºC in different concentrations of methanol and sucrose. Theriogenology. 60(8): 1409–1422.

Alfaro J., Komen J. and Huisman E.A. 2001. Cooling, cryoprotectant and hypersaline sensitivity of penaeid shrimp embryos and nauplius larvae. Aquaculture, 195: 353–366.

Beirao J., Robles V., Herraez M.P., Sarasquete C., Dinis M.T. and Cabrita E. 2006. Cryoprotectant microinjection toxicity and chilling sensitivity in gilthead seabream (Sparus aurata) embryos. Aquaculture, 261: 897–903.

Bonner G. and Klibanov A.M. 2000.Structural stability of DNA in non-aqueous solvents. Biotechnology Bioengineering, 68: 339–344.

Cabrita E., Chereguini O., Luna M.,DePazP.andHerraezM.P. 2003a. Effect of different treatments on the chorin permeability to DMSO of turbot embryos (Scophtalmus maximus). Aquaculture, 221: 593–604.

Cabrita E., Robles V. and Herraez M.P. 2008. Methods in Reproductive Aquaculture: Marine and Freshwater Species. CRC Press. 572P.

Cabrita E., Robles V., Chereguini O., Wallace J.C. and Herraez M.P. 2003b. Effect of different cryoprotectants and vitrificant solutions on the hatching rate of turbot embryos (Scophthalmus maximus). Cryobiology, 47: 204–213.

Cabrita E., Robles V., Wallace J.C., Sarasquete M.C. and Herraez M.P. 2006. Preliminary studies on the cryopreservation of gilthead seabream (Sparus aurata) embryos. Aquaculture, 251: 245–255.

Chao N.H., Lin T.T., Chen Y.J., Hsu H.W. and Liao I.C. 1997. Cryopreservation of late embryos and early larvae in the oyster and hard clam. Aquaculture, 155: 31– 44.

Chen S.L. and Tian Y.S. 2005. Cryopreservation of flounder (Paralichthys olivaceus) embryos by vitrification. Theriogenology, 63: 1207–1219.

Dinnyes A., Urbanyi B., Baranyai B. and Magyary I. 1998. Chiling sensivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence of cryoprotectants: Work in progress. Theriogenology, 50: 1–13.

Donaldson E. 1996. Manipulation of reproduction in fanned fish. Animal Reproduction Science, 42: 381–392.

Keivanloo S. and Sudagar M. 2013. Preliminary studies on the cryo-preservation of Persian Sturgeon (Acipenser persicus) embryos. Open Access Scientific Reports, 2(3): 1–6.

Keivanloo S. and Sudagar M. 2016. Cryopreservation of Persian sturgeon (Acipenser persicus) embryos by DMSO-based vitrificant solutions. Theriogenology, 85: 1013–1018.

Liu K., Chou T. and Lin H.D. 1993. Cryosurvival of goldfish embryo after subzero freezing. Aquatic Living Resources, 6(1): 63–66.

Liu X.H., Zhang T. and Rawson D.M. 1998. Feasibility of vitrification of zebrafish (Danio rerio) embryos using methanol. Cryo Letters, 19: 309–318.

Mande S.C. and Sobhia M.E. 2000. Structural characterization of proteindenaturant interactions: Crystal structures of hen egg-white lysozyme in complex with DMSO and guanidinium chloride. Protein Engineering, 13: 133–141.

McAndrew B., Rana K. and Penman D. 1995. Conservation and preservation of genetic variation in aquatic organisms. P: 295–336. In: Muir J.F. and Roberts R.J. (Eds.). Recent Advances in Aquaculture IV. Blackwell Scientific Publications, London.

Newton S.S. and Subramoniam T. 1996. Cryoprotectant toxicity in penaeid prawn embryos. Cryobiology, 33(1): 172–177.

O’Neil L., Paynter S.J., Fuller B.J. and Shaw R.W. 1998. Vitrification of mature mouse oocytes in a 6 M DMSO solution supplemented with antifreeze glycolproteins. Cryobiology, 37: 59– 66.

Okada Y. 1960. Studies on the freshwater fishes of Japan. Prefectural University of Mie Tsu, Mie Prefecture, Japan. 860P.

Otoi T., Yamamoto K., Koyama N., Tachikama S. and Suzuki T. 1998. Cryopreservation of mature bovine oocytes by vitrification in straws. Cryobiology, 37: 77–85.

Pillai B.R., Rao K.J. and Mohanty J. 2001. Toxicity of selected cryoprotectants to the first zoeal stages of giant freshwater prawn Macrobrachium rosenbergii (de Man). Asian Fisheries Science, 14: 1–8.

Rahman S.M., Majhi S.K., Suzuki T., Matsukawa S., Strussmann C.A. and Takai R. 2008. Suitability of cryoprotectants and impregnation protocols for embryos of Japanese whiting Sillago japonica. Cryobiology, 57: 170–174.

Rail W.F. 1993. Advances in the cryopreservation of embryos and prospects for application to the conservation of salmonid fishes. P: 137–158. In: Cloud J.G. and Thorgaard G.H. (Eds.). Genetic Conservation of Salmonid Fishes. Plenum Press, New York, USA.

Robertson S.N., Lawrence A.L., Neil W.H., Arnold C.R. and McCarty G. 1988. Toxicity of the cryoprotectants glycerol, dimethyl sulfoxide, ethylene glycol, methanol, sucrose, and sea salt solution to the embryos of red drum. Progressive Fish Culturist, 50: 148–154.

Robles V., Cabrita E., Real M., Alvarez R. and Herraez M.P. 2003. Vitrification of turbot embryos: Preliminar assays. Cryobiology, 47: 30–39.

Roubaud P., Chaillou C. and Sjafei D. 1985. Variations cycliques de la toldrance a un choc thermique froid appliqu6 au cours de la segmentation de l'embryon de la carpe commune (Cyprinus carpio L.). Canadian Journal of Zoology, 63(3): 657–663.

Shaluei F., Imanpoor M.R., Shabani A. and Nasr-Esfahani M.H. 2013. Effect of different concentrations of permeable and non-permeable cryoprotectants on the hatching rate of goldfish (Carassius auratus) embryos. Asian Pacific Journal of Reproduction, 2: 185–188.

Sharifuddin M.M and Azizah S.M.N. 2014. Preliminary studies on cryopreservation of snakehead (Channa striata) embryos. Cryobiology, 69(1): 1–9.

Simon C., Dumont P., Cuende F.X. and Diter A. 1994. Determination of suitable freezing media for cryopreservation of Penaeus indicus embryos. Cryobiology, 31: 245–253.

Spikings E., Zampolla T., Rawson D.,WangY.andZhangT.2012. Effect of methanol on mitochondrial organization in zebrafish (Danio rerio) ovarian follicles. Theriogenology, 77: 28–38.

Suzuki T., Komada H., Takai R., Arii K. and Kozima T.T. 1995. Relation between toxicity of cryoprotectant DMSO and its concentration in several fish embryos. Fisheries Science, 61: 193–197.

Tian Y., Jiang J., Song L., Chen Z., Zhai J., Liu J., Wang N. and Chen S. 2015. Effects of cryopreservation on the survival rate of the seven-band grouper (Epinephelus septemfasciatus) embryos. Cryobiology, 71: 499–506.

Urbanyi B., Baranyai B. and Dinnyes A. 1998. Chilling sensitivity of non-activated carp (Cyprinus carpio) eggs. Theriogenology, 49(1): 172.

Urbanyi B., Baranyai B., Magyary I. and Dinnyes A. 1997. Toxicity of methanol, DMSO and glycerol on carp (Cyprinus carpio) embryos in different development stages. Theriogenology, 47: 408.

Vuthiphandchai V., Pengpun B. and Nimrat S. 2005. Effects of cryoprotectant toxicity and temperature sensitivity on the embryos of black tiger shrimp (Penaeus monodon). Aquaculture, 246: 275–284.

Xiao Z.Z., Zhang L.L., Xu X.Z., Liu Q.H., Liu Q.H. and Li J. 2008. Effect of cryoprotectants on hatching rate of red seabream (Pagrus major) embryos. Theriogenology, 70: 1086–1092.

Zhang T., Rawson D.M. and Morris G.J. 1993. Cryopreservation of pre-hatch embryos of zebrafish (Brachydanio rerio). Aquatic Living Resources, 6(2): 145–153.

Zhang X.S., Zhao L., Hua T.C. and Zhu H.Y. 1989. A study on cryopreservation of common carp (Cyprinus carpio) embryos. Cryo Letters, 10: 271–278.

Zhang Y.Z., Zhang S.C., Liu X.Y., Xu Y.J., Hu J.H., Xu Y.Y., Li J. and Chen S.L. 2005. Toxicity and protective efficency of cryoprotectants to flounder (Paralichthys olivaceus) embryos. Theriogenology, 63: 765–773.