سنتز سبز نانوذره اکسید روی با استفاده از عصاره جلبک قهوه‌ای Sargassum ilicifoliumو ارزیابی خواص ضدباکتریایی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زیست‌شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 استاد گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران

3 دانشیار گروه زیست‌شناسی دریا، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران

4 دانشیار گروه شیمی، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران

5 دانشیار گروه زیست‌شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

10.22124/japb.2023.25411.1510

چکیده

سنتز سبز نانو‌ذرات توجه بسیار زیادی را به دلیل منافع اقتصادی و زیست‌محیطی در برابر روش‌های رایج سنتز شیمیایی به خود جلب کرده است. عصاره آبی ماکروجلبک قهوه‌ای Sargassum ilicifolium برای سنتز سبز نانوذرات اکسید روی مورد استفاده قرار گرفت. نانوذرات سنتز شده به وسیله تغییر رنگ، طیف‌سنجی UV-Vis، FT-IR، TEM، SEM و XRD مورد شناسایی قرار گرفت. نتایج نشان داد که نانوذرات شکل گرفته کروی و کریستالی با محدوده اندازه بین 1/15 تا 27 نانومتر بودند. فعالیت ضدباکتریایی نانوذرات اکسید روی سنتز سبز شده با روش MIC و MBC در برابر باکتری‌های Staphylococcus aureus و Escherichia coli مورد بررسی قرار گرفت و نتایج نشان داد که نانوذرات اکسید روی سنتز سبز شده اثر قابل توجه ضدباکتریایی در برابر باکتری‌های آزمایش شده داشتند. در نهایت، این پژوهش نشان می‌دهد که سنتز سبز نانوذرات اکسید روی از ماکروجلبک‌های دریایی می‌تواند یک روش موثر، پایدار و دوستدار محیط زیست برای تولید نانوذرات اکسید روی با ویژگی‌های ضدباکتریایی باشد.

کلیدواژه‌ها

موضوعات


Agarwal H., Kumar S.V. and Rajeshkumar S. 2017. A review on green synthesis of zinc oxide nanoparticles- An eco-friendly approach. Resource-Efficient Technologies, 3(4): 406–413. doi: 10.1016/j.reffit.2017.03.002
Alamdari S., Sasani Ghamsari M., Lee C., Han W., Park H.H., Tafreshi M.J., Afarideh H. and Ara M.H. M. 2020. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences, 10(10): 1–19 (3620). doi: 10.3390/app10103620
Ali K., Dwivedi S., Azam A., Saquib Q., Al-Said M.S., Alkhedhairy A.A. and Musarrat J. 2016. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. Journal of Colloid and Interface Science, 472: 145–156. doi: 10.10 16/j.jcis.2016.03.021
Alprol A.E., Mansour A.T., El-Beltagi H.S. and Ashour M. 2023. Algal extracts for green synthesis of zinc oxide nanoparticles: Promising approach for algae bioremediation. Materials, 16(7): 1–23 (2819). doi: 10.3390/ma160728 19
Ann L.C., Mahmud S., Bakhori S.K.M., Sirelkhatim A., Mohamad D., Hasan H., Seeni A. and Rahman R.A. 2014. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceramics International, 40(2): 2993–3001. doi: 10.1016/j.ceramint.2013.10.008
Asmathunisha N. and Kathiresan K. 2013. A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces (B), 103: 283–287. doi: 10.1016/j.colsurfb.201 2.10.030
Azizi S., Ahmad M.B., Namvar F. and Mohamad R. 2014. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters, 116: 275–277. doi: 10.1016/j.matlet.2013. 11.038
Casida J.E. and Quistad G.B. 2000. Insecticide targets: Learning to keep up with resistance and changing concept of safety. Journal of Applied Biological Chemistry, 43(4): 185–191.
Dallatu Y., Shallangwa G. and Africa S. 2020. Synthesis and growth of spherical ZnO nanoparticles using different amount of plant extract. Journal of Applied Sciences and Environmental Management, 24(12): 2147–2151. doi: 10.4314/jas em.v24i12.21
Elumalai K. and Velmurugan S. 2015. Green synthesis, characterization and antimicrobial activities of zinc oxide nano-particles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345: 329–336. doi: 10.1016/j.apsusc.2015.03.176
Fakhari S., Jamzad M. and Kabiri Fard H. 2019. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chemistry Letters and Reviews, 12(1): 19–24. doi: 10.1080/17518253.2018.1547925
Humphries R.M., Ambler J., Mitchell S.L., Castanheira M., Dingle T., Hindler J.A., Koeth L. and Sei K. 2018. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. Journal of Clinical Microbiology, 56(4): 1–10 (e01934-17). doi: 10.1128/jcm.0193 4-17
Ishwarya R., Vaseeharan B., Kalyani S., Banumathi B., Govindarajan M., Alharbi N.S., Kadaikunnan S., Al-Anbr M.N., Khaled J.M. and Benelli G. 2018. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology (B), 178: 249–258. doi: 10.1016/j.jp hotobiol.2017.11.006
Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Gaurav K., Karthik L. and Rao K.B. 2012. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta (A), 90: 78–84. doi: 10.1016/ j.saa.2012.01.006
Kamli M.R., Malik M.A., Srivastava V., Sabir J.S., Mattar E.H. and Ahmad A. 2021. Biogenic ZnO nanoparticles synthesized from Origanum vulgare abrogates quorum sensing and biofilm formation in opportunistic pathogen Chromobacterium violaceum. Pharmaceutics, 13(11): 1–24 (1743). doi: 10.3390/pharmace utics13111743
Ko S.H., Park I., Pan H., Grigoropoulos C.P., Pisano A.P., Luscombe C.K. and Frechet J.M. 2007. Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Letters, 7(7): 1869–1877. doi: 10.10 21/nl070333v
Kokabi M., Yousefzadi M., Nejad Ebrahimi S. and Zarei M. 2017. Green synthesis of zinc oxide nanoparticles using Seaweed aqueous extract and evaluation of antibacterial and ecotoxicological activity. Journal of Persian Gulf, 8(27): 61–72. doi: 10.29252/jpg.8.27. 61
Kumar V. and Yadav S.K. 2009. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology, 84(2): 151–157. doi: 10.1002/jctb.2023
Ling D., Hackett M.J. and Hyeon T. 2014. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today, 9(4): 457–477. doi: 10.1016/j.nantod.2014. 06.005
Matinise N., Fuku X., Kaviyarasu K., Mayedwa N. and Maaza M. 2017. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties and mechanism of formation. Applied Surface Science, 406: 339–347. doi: 10.101 6/j.apsusc.2017.01.219
Mirzaei H. and Darroudi M. 2017. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1): 907–914. doi: 10.1016/j.ceramint.2016.10.051
Mohanpuria P., Rana N.K. and Yadav S.K. 2008. Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10: 507–517. doi: 10.1007/s11051-00 7-9275-x
Ogunyemi S.O., Abdallah Y., Zhang M., Fouad H., Hong X., Ibrahim E., Masum M.M.I., Hossain A., Mo J. and Li B. 2019. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 341–352. doi: 10.1080/21691 401.2018.1557671
Pandimurugan R. and Thambidurai S. 2016. Novel seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity. Advanced Powder Technology, 27(4): 1062–1072. doi: 10.1016/j.apt.2016.03.014
Pantidos N. and Horsfall L.E. 2014. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine and Nanotechnology, 5(5): 1. doi: 10.4172/2157-7439.1000 233
Prathna T.C., Lazar M., Chandrasekaran N., Raichur A.M. and Mukherjee A. 2010. Biomimetic synthesis of nano-particles: Science, technology and applicability. P: 1–20. In: Mukherjee A. (Ed.). Biomimetics Learning from Nature. IntechOpen, UK.  doi: 10.5772/198
Sharma R.K. and Ghose R. 2015. Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceramics International, 41(1): 967–975. doi: 10.1016/j.ceramint.201 4.09.016
Sharmila G., Muthukumaran C., Sandiya K., Santhiya S., Pradeep R.S., Kumar N.M., Suriyanarayanan N. and Thirumarimurugan M. 2018. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 8: 293–299. doi: 10.10 07/s40097-018-0271-8
Singh C.R., Kathiresan K. and Anandhan S. 2015. A review on marine based nanoparticles and their potential applications. African Journal of Biotechnology, 14(18): 1525–1532. doi: 10.5897/AJB2015. 14527
Taha K., Modwi A., Khezami L. and Heikal M. 2018. Simplistic one pot synthesis of ZnO via chelating with carboxylic acids. Digest Journal of Nanomaterials and Biostructures, 13(4): 1213–1222.
Vennila S. and Jesurani S.S. 2017. Eco-friendly green synthesis and characterization of stable ZnO nanoparticle using small gooseberry fruits extracts. International Journal of ChemTech Research, 10(3): 271–275.
Vidya C., Hiremath S., Chandraprabha M., Antonyraj M., Gopal I.V., Jain A. and Bansal K. 2013. Green synthesis of ZnO nanoparticles by Calotropis gigantea. International Journal of Current Engineering and Technology, 1(1): 118–120.
Vijayakumar S., Mahadevan S., Arulmozhi P., Sriram S. and Praseetha P. 2018. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82: 39–45. doi: 10.1016/j.mssp.2018.03.017
Yathisha R., Nayaka Y.A. and Vidyasagar C. 2016. Microwave combustion synthesis of hexagonal prism shaped ZnO nanoparticles and effect of Cr on structural, optical and electrical properties of ZnO nanoparticles. Materials Chemistry and Physics, 181: 167–175. doi: 10.1016/j.matchemphys.201 6.06.046
Zirakjou S., Dekamin M.G., Valiey E. and Dohendou M. 2023. Tannic acid-poly ethyleneimine magnetic nanoparticles: An efficient and recyclable catalyst for green synthesis of 2,3-dihydro quinazole derivatives. Research Square, USA. 24P. doi: 10.21203/rs. 3.rs-2524709/v1