اثر عصاره غده هیپوفیز بر هورمون‌های استروئیدی، عملکرد تولیدمثلی، بافت‌شناسی و بیان ژن‌های Cyp191a1، ZP2 و SF-1 تخمدان ماهی مولد روهو (Labeo rohita )

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تکثیر و پرورش آبزیان، گروه شیلات، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 استادیار گروه شیلات، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 دانشیار گروه شیلات، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

4 دانشیار مرکز تحقیقات تکثیر و پرورش آبزیان، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

10.22124/japb.2024.27317.1537

چکیده

مطالعه سازوکارهای فعالیت تولیدمثلی در ماهیان که باعث تنظیم دوره‌های جنسی می‌شود، دارای اهمیت است و به طور فزاینده‌ای به سمت فناوری‌های کمک باروری معطوف می‌شود. در این مطالعه 90 قطعه مولد ماده روهو (Labeo rohita) با وزن متوسط 41/0±3 کیلوگرم مورد استفاده قرار گرفت و تاثیر دو غلظت عصاره غده هیپوفیز بر عملکرد تخم‌ریزی، میزان استروئیدهای جنسی، بیان ژن‌های مربوط به استروئیدزایی و بافت‌شناسی تخمدان ماهی بررسی شد. این مطالعه نشان داد که بیشترین موفقیت تخم‌ریزی با غلظت عصاره 5 میلی‌گرم در کیلوگرم مشاهده شد، دوره نهفتگی ماده با افزایش غلظت کاهش یافت و باروری این تیمار به طور قابل توجهی بالاتر از گروه‌های دیگر بود. تیمار با عصاره غده هیپوفیز در هر دو غلظت به کار رفته باعث افزایش معنی‌دار شاخص گنادوسوماتیک، درصد لقاح، تخم‌گشایی و بازماندگی لارو نسبت به گروه‌های شاهد و شم شد (05/0>P). در 12 ساعت پس از تزریق، تیمارهای عصاره هیپوفیز افزایش معنی‌داری را در سطوح هورمون‌های استروئیدی و بیان ژن‌های بررسی شده در بافت تخمدان در مقایسه با تیمارهای شاهد و شم نشان دادند. بررسی‌های میکروسکوپی فولیکول‌های بافت تخمدان ضمن وجود تخمدان ناهمزمان در این گونه ماهی، یک تغییر استروئیدوژن را نشان داد که در آن بلوغ تخمک با تزریق عصاره هیپوفیز، بویژه غلظت 5 میلی‌گرم در کیلوگرم، تسریع شد. یافته‌ها نشان دادند که فقط مولدینی که با عصاره هیپوفیز تحت تیمار قرار گرفته بودند، تخمک‌گذاری کردند و عصاره هیپوفیز دارای اثرات مثبت هم‌افزایی بر بافت تخمدان و برخی عوامل هورمونی است و باعث افزایش باروری و بازماندگی لارو ماهی روهو می‌شود.

کلیدواژه‌ها

موضوعات


 Abbasi F., Oryan S. and Matinfar A. 2003. Histology and morphology of common grouper (Epinephelus coioides) ovary in Khuzestan waters of Persian Gulf [In Persian]. Journal of Research and Development in Livestock and Aquatic Affairs, 66(1): 68–74.
Abd-Elhakim E., Gamal E., El-Sayyad H., Mohamed A., Rania S. and Barakat O. 2021. Histological and histochemical studies on the ovarian develop-ment of the grass carp, Ctenopharyngodon idella with special references to atretic phenomena. Egyption Journal of Aquaculture Biology and Fisheris, 25(1): 477–492. doi: 10.21608/ejabf. 2021.145443
Abubakar M.Y. and Miftahu M.Y. 2023. Effect of pituitary gland from spent and unspent female brood fish spawning performance of African catfish (Clarias gariepinus). Journal of Agriculture and Environment, 19(2): 135–142. doi: 10.4314/jagrenv.v19i2.14
Acharjee A., Chaube R. and Joy K.J.G. 2017. Ovaprim, a commercial spawning inducer, stimulates gonadotropin subunit gene transcriptional activity: A study correlated with plasma steroid profile, ovulation and fertilization in the catfish Heteropneustes fossilis. General Comparative Endocrinology, 251: 66–73. doi: 10.1016/j.ygcen.2016.10. 001
Ahmadnezhad M., Oryan S., Hosseinzadeh Sahafi H. and Khara H. 2013. Effect of synthetic luteinizing hormone releasing hormone (LHRH-A2) plus pimozide and chlorpromazine on ovarian development and levels of gonad steroid hormones in female kutum Rutilus frisii kutum. Turkish Journal of Fisheries and Aquaculture Science, 13: 95–100. doi: 10.4194/1303-2712-v13_1_12
Al Zaidy F., Al-Noorm S. and Jasim B.M. 2017. The effect of hormone type and amount of dose on gonadotropin hormones levels in blood plasma of common carp (Cyprinus carpio) during artificial spawning processes. Iraqian Journal Aquaculture, 41(1): 28–41. doi: 10.58629/ijaq.v14i1.81
Alcantar-Vazquez J.P., Rueda-Curiel P., Calzada-Ruiz D., Antonio-Estrada C. and Moreno De La Torre R. 2015. Feminization of the Nile tilapia Oreochromis niloticus by estradiol 17-β effects on growth, gonadal development and body composition. Hidrobiologica, 5(2): 275–283.
Barrero M., Small C.B.D., Abramo L.R., Waldbeiser G.C., Hanson L.A. and Kelly A.M. 2011. Effect of carp pitiuitary exract and luteinizing hormone releasing analog hormone on reproductive indices and spawning of 3-year-old channel catfish. North American Journal of Aquaculture, 70(2): 138–146. doi: 10.1577/A06-072.1
Brown C.L., Urbinati E.C., Weimin Zhang W., Brown S.B. and Michelle McComb-Kobza M. 2014. Maternal thyroid and glucocorticoid hormone intera-ctions in larval fish development, and their applications in aquaculture. Reviews in Fisheries Science and Aquaculture, 22: 207–220. doi: 10.1080/23308249.2014.918 086
Das S., Chhottaray C., Das Mahapatra K., Saha J.N., Baranski M. and Robinson N.  2014. Analysis of immune-related ESTs and differential expression analysis of few important genes in lines of rohu (Labeo rohita) selected for resistance and susceptibility to Aeromonas hydrophila infection. Molecular Biology Report, 41: 7361–7371. doi: 10.1007/s11033-014-3625
Deal C.K. and Volkoff H. 2020. The role of the thyroid axis in fish. Frontiers in Endocrinology, 11: 1–25. doi: 10.3389/fendo.2020.596585
Eales J.G. 2006. Modes of action and physiological effects of thyroid hormones in fish.  Fish Endocrinology, 2: 767–808. doi: 10. 1139/z04-099
Elakkanai P., Francis T., Ahilan B., Jawahar P., Padmavathy P. and Jayakumar N. 2015. Role of GnRH, HCG and kisspeptin on reproduction of fishes. Indian Journal of Science and Technology, 8(17): 1–10. doi: 10.17 485/ijst/2015/v8i17/65166
Eslamizadeh E., Mabudi H., Roomiani L., Javaheri Baboli M. and Chelemal Dezfulnezhad M. 2022. Comparative study of pituitary extract, LHRH and thyroxine on sex steroids, histo-chemistry and (Labeo rohita) producing fatty acids [In Persian]. Animal Biology, 14(4): 135–152. doi: 10.22034/ascij.2022.1934909.12 69
 Eslamizadeh E., Mabudi H., Roomiani L., Javaheri Baboli M. and Chelemal Dezfulnezhad M. 2024. Effects of thyroxin and lutinizing hormone releasing hormone on reproductive physiology of rohu (Labeo rohita): Insights into spawning performance, oocyte matyration, steroidogenesis, and follicular development genes. Animal Reproduction Science, 267: 1–13 (107542). doi: 10.1016/j.anireprosci. 2024.107542
Farahani S. and Jamili S. 2010. The histochemical survey of lipid and protein of female mullie liver and ovary (Pocilia sphenops) and histological study of calcium and lipid on three groups (adult, preadult and immature) [In Persian]. Journal of Marine Science and Technology Research, 3: 20–30.
Ismail R.F., Assem S.S., Sharaf H.E.R., Zeitoun A.A.M. and Srour T.M.A. 2023. The effect of thyroxine (T4) and goitrogen on growth, liver, tyroid and gonadal development of red tilapia (O. mossambicus × O. urolepis hornorum). Aqua Inter: 1–18. doi: 10.1007/s10499-023-01210-8
Kar B., Mohanty J., Hemaprasanth K.P. and Sahoo P.K. 2013. The immune response in rohu, Labeo rohita (Actinopterygii: Cyprinidae) to Argulus siamensis (Branchiura: Argulidae) infection: Kinetics of immune gene expression and innate immune response. Aquaculture Research, 2013: 1–17. doi: 10.1111/are.12279
Kho K.H., Sukhan Z.P., Yang S., Hwang N. and Lee W. 2023. Gonadotropins and sex steroid hormones in captive-reared small yellow croaker (Larimichthys polyactis) and their role in female reproduction dysfunction. International Journal of Molecular Sciences, 24(10): 1–20 (8919). doi: 10.3390/ijms24108919
Kinoshita M., Rodler D., Sugiura K., Matsushima K., Kansaku N., Tahara K., Tsukada A., Ono H., Yoshimura T., Yoshizaki N., Tanaka R., Kohsaka T. and Sasanami T. 2010. Zona pellucida protein ZP2 is expressed in the oocyte of Japanese quail (Coturnix japonica). Reproduction, 139(2): 359–371. doi: 10.1530/REP-09-0222
Kocmarek A.L, Ferguson M. and Danzmann R.G. 2014. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics, 15: 1–19. doi: 10.1186/1471-2164-15-57
Kucharczyk D., Malinovskyi O., Nowosad J., Kowalska A. and Cejko B.I. 2021. Comparison of responses to artificial spawning of ruffe (Gymnocephalus cernua) specimens captured from their natural habitat to those produced in cultured conditions. Animal Reproduction Science, 225: 124–139. doi: 10.1016/j.anireprosci.2020. 106684
Mabudi H., Jamili S., Erfani Majd N., Vosoughi G., Fatemi M.R. and Rashed S. 2011. The effects of ghrelin on ovary histology in Barbus sharpeyi. Journal of Animal Physiology and Animal Nutrition, 95: 599–601. doi: 10.11 11/j.1439-0396.2010.01089.x
Malcolm D.C., Donaldson J.W., Gregory G.V. and Joseph I.W. 2019. Practical endocrinology and diabetes in children. Reproduction, 15(2): 282–328. doi: 10.4183/aeb.20 19.282
Malik M.A., Gupta S., Varghese T., Jahageerdar S., Nayak S.K., Reang D., Bhat I.A., Mahadevaswamy C.G., Chuphal N., Dar S.A. and Prabhakaran A. 2023. Chitosan-hypothalamic hormonal analogue nanoconjugates enhanced in Indian major carp, Labeo rohita. Frontiers in Marine Science, 10: 1–15. doi: 10.3389/ fmars.2023.1311158
Mohammadian T., Silavi M., Hosseini A., Rouhani S., Mohammadi A. and Heidari B. 2014. Comparison of the effect of 3-stage injection of LHRH-α2+PG with 2-stage injection of pituitary extract on the reproductive performance of benny fish [In Persian]. Iranian Veterinary Journal, 10(1): 85–96.
Mohammadzadeh S., Yeganeh S., Moradian F., Milla S. and Falahatkar B. 2021. Spawning induction in sterlet sturgeon (Acipenser ruthenus) with recombinant GnRH: Analysis of hormone profiles and spawning indices. Aquaculture, 533: 165–179. doi: 10.1016/j.aquaculture.2020. 736108
Mokhtar D.M. 2019. Characteri-zation of the fish ovarian stroma during the spawning season: Cytochemical, immunohisto-chemical and ultrastructural studies. Fish and Shellfish Immunology, 94: 566–579. doi: 10. 1016/j.fsi.2019.09.050
Mold D.E., Dinitz A.E. and Sambandan D.R. 2009. Regulation of zebrafish zona pellucida gene activity in developing oocytes. Biology Reproduction, 81(1): 101–110. doi: 10.1095/biolreprod.108.071720
Moulik S.R., Pal P., Majumder S., Mallick B., Gupta S. and Guha P. 2016. Gonadotropin and sf-1 regulation of Cyp19a1a gene and aromatase activity during oocyte development in the Rohu, L. rohita. Comparative Biochemistry and Physiology (A), 196: 1–10. doi: 10. 1016/j.cbpa.2016.02.004
Muchlisin Z.A. 2014. A general overview on some aspects of fish reproduction. Aceh International Journal of Science and Technology, 3(1): 43–52. doi: 10.13170/AIJST.03 01.05
Mylonas C.C., Fostier A. and Zanuy S. 2010. Broodstock management and hormonal manipulations of fish reproduction. General Comparative Endocrinology, 165(3): 516–534. doi: 10.1016/j. ygcen.2009.03.007
Naeem M., Zuberi A., Ashraf M., Ahmad W., Ishtiaq A. and Hasan N. 2013. Induced breeding of Labeo rohita through single application of ovaprim-C at Faisalabad Hatchery, Pakistan. African Journal of Biotechnology, 12(19): 2122–2126. doi: 10.5897/ AJB12.1037
Omidian N., Asghari M., Heidari B., Valipour A. and Rabouti H. 2022. Investigating the biological activity of red fish case peptin after adding an acetyl group to the amino terminal tyrosine residue [In Persian]. Journal of Fisheries Science and Techniques, 12(1): 81–99.
Pereira T., Boscolo C., Moreira R.G. and Batlouni S.R. 2017. The use of mGnRHa provokes ovulation but not viable embryos in Leporinus macrocephalus. Aquaculture International, 25: 515–529. doi: 10.1007/s10499-016-0049-2
Pfaffl M.W. 2001. A new mathe-matical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9): 45–62. doi: 10.1093/nar/29.9. e45
Pham H.Q., Nguyen A.T., Nguyen M.D. and Arukwe A. 2010. Sex steroid levels, oocyte maturation and spawning performance in Waigieu seaperch (Psammoperca waigiensis) exposed to thyroxin, human chorionic gonadotropin, luteinizing hormone releasing hormone and carp pituitary extract.  Comparative Biochemistry Physiology (A), 55(2): 223–230. doi: 10.1016/j.cbpa.2009.10.044
Podhorec P., Socha M., Ammar I.B., Sokolowska-Mikolajczyk M., Brzuska E. and Milla S. 2016. The effects of GnRHa with and without dopamine antagonist on reproductive hormone levels and ovum viability in tench Tinca tinca.  Aquaculture, 465: 158–163. doi: 10. 1016/j.aquaculture.2016.09.012
Rahman M.M., Kundu S., Biswas P., Parvez M.S., Rouf M.A. and Asaduzzaman S. 2021. Influence of maternal weight, age, larval feeding and their interactions on the hatchery outcomes of an Indian major carp (Labeo rohita, Hamilton 1822). Aquaculture Reports, 19: 135–156. doi: 10.1016/ j.aqrep.2021.100633
Rasheeda M., Sridevi P. and Senthilkumaran B. 2010. Cytochrome P450 aromatases: Impact on gonadal development, recrudescence and effect of hCG in the catfish, Clarias gariepinus. General Comparative Endocrinology, 167(2): 234–245. doi: 10.1016/j.ygcen.2010.03.009
Shirali S., Erfani Majd N., Mesbah M. and Seifiabad Shapoori M.R. 2011. Histological and histo-metrical study of common carp ovarian development during breeding season in Khouzestan province in Iran. International Journal of Veterinary Research, 5(4): 260–268. doi: 10.22059/ijvm. 2011.23583
Siddique M.A.M., Linhart O., Krejszeff S., Zarski D., Krol J. and Butts I. 2016. Effects of preincubation of eggs and activation medium on the percentage of eyed embryos in ide (Leuciscus idus), an externally fertilizing fish. Theriogenology, 85(5): 849–455. doi: 10.1016/j.therio genology
Soyano K., Amagai T., Yamaguchi T., Mushirobira Y., Xu W.G. and Phạm N.T. 2022. Endocrine regulation of maturation and sex change in groupers. Cells, 11(5): 825–834. doi: 10.3390/cells11050825
Tamaru C.S., Kelley C.D., Lee C.S., Aida K., Hanyu I. and Goetz F. 1991. Steroid profiles during maturation and induced spawning of the striped mullet, Mugil cephalus L. Aquaculture, 95: 149–168. doi:10.1016/0044-8486(91)9008 2-I
Tang B., Hu W., Hao J. and Zhu Z. 2010. Developmental expression of steroidogenic factor-1, cyp19a1a and cyp19a1b from common carp (Cyprinus carpio). General Comparative Endocrinology, 167(3): 408–416. doi: 10.1016/j. ygcen.2010.03.017
Teimuri M., Mohammadizadeh F. and Bahri A. 2018. Artificial propagation of serum fish (Cichlasomaseverum sp.) using carp pituitary hormone extract (CPE) and synthetic hormone GnRHa [In Persian]. Aquaculture Development Journal, 12(3): 31–40.
Tovo-Neto A., Rodrigues M., Habibi H. and Nobrega R. 2018. Thyroid hormone actions on male reproductive system of teleost fish. Thyroid hormone actions on male reproductive system of teleost fish. General and Comparative Endocrinology, 265: 230–236. doi: 10.1016/j.ygcen.2018.04.023
Uno T., Ishizuka M. and Itakura T. 2012. Cytochrome P450 (CYP) in fish. Environmental Toxicology and Pharmacology, 34(1): 1–13. doi: 10.1016/j.etap.2012.02.004
Yousefian M., Ghanei M., Pourgolam R. and Rostami H.K.H. 2009. Gonad development and hormonal induction in artificial propagation of grey mullet, Mugil cephalus L. Research Journal of Fisheries and Hydrobiology, 4(2): 35–40.
Yu J., Li D., Zhu J., Zou Z., Xiao W., Chen B. and Yang H. 2022. Effects of defferent oxytocin and temperature on reproductive activity in Nile tilapia (Oreochromis niloticus): Based on sex steroid hormone and GTHR gene expression. Fishes, 7(316): 1–14. doi: 10.3390/fishes7060316
Zadmajid V. and Butts I. 2018. Spawning performance, serum sex steroids, and ovarian histology in wild-caught Levantine scraper, Capoeta damascina (Valenciennes, 1842) treated with various doses of sGnRHa+ domperidone. Journal of Animal Science, 96(12): 5253–5264. doi: 10.1093/jas/sky348
Zamri A.S., Zulperi Z., Esa Y. and Syukri F. 2022. Hormone application for artificial breeding towards sustainable aquaculture- A review. Pertanika Journal of Social Sciences and Humanities, 45(4): 97–118. doi: 10.47836/pjtas.45.4.11
Zulkifle M., Zulperi Z. and Christianus A. 2021. Effects of pH, feeding regime and thyroxine on growth and survival of Parosphromenus tweediei (Kottelat and Ng, 2005) fry. Journal of Survey in Fisheries Sciences, 8: 89–105. doi: 10.17762/ sfs.v8i1.71