اثرات به کارگیری غذاهای زنده هنگام گذار به غذای فرموله بر شاخص‌های رشد و ترکیب آمینواسیدهای لارو فیل‌ماهی (Huso huso)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تکثیر و پرورش، گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه‌سرا، ایران

2 دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه‌سرا، ایران

3 دانشیار بخش آبزی‌پروری، انستیتو تحقیقات بین المللی ماهیان خاویاری، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، رشت، ایران

4 استادیار بخش فیزیولوژی و بیوشیمی، انستیتو تحقیقات بین المللی ماهیان خاویاری، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، رشت، ایران

10.22124/japb.2024.27604.1543

چکیده

در مطالعه حاضر، اثر عادت‌دهی به جیره‌های فرموله با استفاده از غذای زنده بر عملکرد رشد و محتوای آمینواسیدهای لارو فیل‌ماهی (Huso huso) بررسی شد. لاروهای فیل‌ماهی با میانگین وزن اولیه 01/0±44/0 گرم در 12 مخزن فایبر گلاس به طور تصادفی توزیع شدند. فرایند عادت‌دهی طی 42 روز با استفاده از انواع غذای زنده شامل لارو منجمد شیرونومید (CH)، زی‌توده منجمد آرتمیا (A)، مخلوطی از زی‌توده آرتمیا و شیرونومید (M) انجام شد. همچنین، لاروها در گروه D در تمامی طول دوره تنها با جیره فرموله تغذیه شدند. هر شش روز یک‌بار به میزان 6/16 درصد از غذای زنده مصرفی کاسته و به میزان غذای فرموله اضافه شد. در پایان دوره، شاخص­های رشد، میزان بقا و پروفایل آمینواسیدهای لاروها مورد ارزیابی قرار گرفت. نتایج این مطالعه نشان داد که وزن نهایی و وزن به دست آمده در گروه D و CH به طور معنی‌داری بالاتر از گروه‌های دیگر بود (05/0>P). بالاترین درصد زنده‌مانی متعلق به گروه‌های CH (33/98 درصد) و M (95 درصد) بود (05/0>P). آمینواسیدهای ضروری لوسین و متیونین در تیمار CH بالاتر از تیمارهای دیگر بود (05/0>P). همچنین با وجود معنی­دار نبود تفاوت­ها، بالاترین میزان آمینواسید ترئونین در بین تیمارهای تغذیه شده با غذای زنده و کمترین مقدار مجموع آمینواسیدهای ضروری بین همه تیمارها در گروه CH مشاهده شد (05/0<P). بر اساس نتایج به دست آمده، استفاده از لارو شیرونومید به دلیل اثرات مثبت بر رشد و ترکیب آمینواسیدهای بدن برای عادت‌پذیری به جیره‌ فرموله در لارو فیل‌ماهی توصیه می‌شود.

کلیدواژه‌ها

موضوعات


Adeli A. and Namdar M. 2015. The Iranian caviar and its substitutes in the world market. Ecopersia, 3: 933–944.
Agh N., Noori F., Irani A., Van Stappen G. and Sorgeloos P. 2013. Fine tuning of feeding practices for hatchery produced Persian sturgeon, Acipenser persicus and beluga sturgeon, Huso huso. Aquaculture Research, 44: 335–344. doi: 10.1111/j.1365-2109. 2011.03031.x
Asgari R., Rafiee G., Eagderi S., Noori F., Agh N., Poorbagher H. and Gisbert E. 2013. Ontogeny of the digestive enzyme activities in hatchery produced beluga (Huso huso). Aquaculture, 416: 33–40. doi: 10.1016/j.aquaculture.2013.08.014
Babaei S., Abedian Kenari A. and Mohammadnazari R. 2011. Study of amino acid composition of Persian sturgeon (Acipenser persicus) larvae fed by live Artemia and Daphnia foods [In Persian]. Iranian Scientific Fisheries Journal, 20(2): 1–8. doi: 10.22092/isfj.2017.109986
Bardi Jr R.W., Chapman F.A. and Barrows F.T. 1998. Feeding trials with hatchery-produced Gulf of Mexico sturgeon larvae. The Progressive Fish-Culturist, 60: 25–31. doi: 10.1577/1548-8640(1998)06 0<0025:FTWHPG>2.0.CO;2
Bogut I., Has-Schon E., Adamek Z., Rajkovic V. and Galovic D. 2007. Chironomus plumosus larvae- A suitable nutrient for freshwater farmed fish. Poljoprivreda, 13: 159–162. doi: 10.18047/poljo.13.2.7
Buddington R.K. and Doroshov S.I. 1984. Feeding trials with hatchery produced white sturgeon juveniles (Acipenser transmontanus). Aquaculture, 36: 237–243. doi: 10. 1016/0044-8486(84)90239-4
Cahu C. and Zambonino Infante J. 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200: 161–180. doi: 10.1016/S0044-8486(01)00699-8
Cara J.B., Moyano F.J., Zambonino J.L. and Alarcon F.J. 2007. The whole amino acid profile as indicator of the nutritional condition in cultured marine fish larvae. Aquaculture Nutrition, 13: 94–103. doi: 10.1111/j.1365-2095.20 07.00459.x
Carvalho A.P., Sa R., Oliva-Teles A. and Bergot P. 2004. Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio) during early larval stages. Aquaculture, 234(1): 319–333. doi: 10.1016/j.aquaculture. 2004.01.007
Chebanov M. and Galich E.V. 2011. Sturgeon Hatchery Manual. Food and Agriculture Organization of the United Nations (FAO), Italy. 338P.
Conceicao L.E.C., Aragao C. and Ronnestad I. 2010. Protein metabolism and amino acid requirements in fish larvae. Avances en Nutricion Acuicola X- Memorias del DecimoSimposio Internacional de Nutricion Acuicola, Universidad Autonoma de Nuevo Leon, Mexico. P: 250–263.
Curnow J., King J., Partridge G. and Kolkovski S. 2006. Effects of two commercial microdiets on growth and survival of barramundi (Lates calcarifer Bloch) larvae within various early weaning protocols. Aquaculture Nutrition, 12: 247–255. doi: 10.1111/j.1365-20 95.2006.00399.x
Dabrowski K., Kaushik S.J. and Fauoconnea B. 1985. Rearing of sturgeon (Acipenser baerii Brandt) larvae: I. Feeding trial. Aquaculture, 47: 185–192. doi: 10. 1016/0044-8486(85)90064-X
Dediu L., Maereanu M., Cristea V. and Maereanu D. 2011. Effect of formulated diet versus live food on growth and survival of Russian sturgeon (Acipenser guldenstaedti) larvae starting exogenous feeding. Bulletin of UASVM, Animal Science and Biotechnologies, 68: 130–136. doi: 10.15835/buasvmcn-asb:68:1-2:6683
Dong Y.W., Jiang W.D., Wu P., Liu Y., Kuang S.Y., Tang L., Tang W.N., Zhou X.Q. and Feng L. 2022. Nutritional digestion and absorption, metabolism fates alteration was associated with intestinal function improvement by dietary threonine in juvenile grass carp (Ctenopharyngodon idella). Aquaculture, 555: 738194. doi: 10.1016/j.aquaculture.2022.738194
Efatpanah I., Falahatkar B., Sajjadi M.M. and Monsef Shokri M. 2024. The effect of feeding with chironomid and Artemia on fatty acids and amino acids profiles in Persian sturgeon (Acipenser persicus) larvae. Aquaculture Nutrition, 2024: 1–13 (6975546). doi: 10.1155/2024/6975546
Falahatkar B. 2015. Fish Nutrition and Feed Formulation [In Persian]. Agricultural Education and Extension Institute, Iran. 334P.
Fauconneau B., Basseres A. and Kaushik S.J. 1992. Oxidation of phenylalanine and threonine in response to dietary arginine supply in rainbow trout (Salmo gairdneri R.). Comparative Biochemistry and Physiology, 101: 395–401. doi: 10. 1016/0300-9629(92)90552-2
Fazli H., Tavakoli M., Khoshghalb M.R., Moghim M. and Valinasab T. 2020. Population dynamics and the risk of stock extinction of Persian sturgeon (Borodin) in the Caspian Sea. Fisheries and Aquatic Life, 28: 62–72. doi: 10.2478/aopf-2020-0009
Ghelichi A., Makhdoomi N., Jorjani S. and Taheri A. 2010. Effect of water temperature on the timing of initial feeding of Persian sturgeon Acipenser persicus larvae. International Aquatic Research, 2: 113–119.
Ghorbani Vaghei R., Yousefi Jourdehi A., Pajand Z., Monsef Shokri M. and Mohseni M. 2023. Effects of different feeding regimes on growth performance, survival rate, carcass composition, fatty acids profile, and digestive enzyme activities of great sturgeon (Huso huso Linnaeus, 1758) larvae. Aquaculture Research, 2023(1): 1–14 (9936622). doi: 10.1155/2023/993 6622
Gisbert E. and Williot P. 1997. Larval behavior and effect of the timing initial feeding on growth and survival of Siberian sturgeon (Acipenser baerii) larvae under small scale hatchery production. Aquaculture, 156: 63–76. doi: 10. 1016/S0044-8486(97)00086-0
Gisbert E., Mozanzadeh M.T., Kotzamanis Y. and Estevez A. 2016. Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture, 462: 92–100. doi: 10.1016/j.aquacul ture.2016.04.035
Gisbert E., Solovyev M., Bonpunt E. and Mauduit C. 2018. Weaning in Siberian sturgeon larvae. P: 59–72. In: Williot P., Nonnotte G. and Chebanov M. (Eds.). The Siberian Sturgeon (Acipenser baerii, Brandt, 1869), Vol. 2: Farming. Springer International Publishing, Switzerland. doi: 10.1007/978-3-31 9-61676-6
Graham L.J. and Murphy B.R. 2007. The decline of the beluga sturgeon: A case study about fisheries management. Journal of Natural Resources and Life Sciences Education, 36: 66–75. doi: 10.2134/jnrlse2007.36166x
Hamidoghli A., Falahatkar B., Khoshkholgh M. and Sahragard A. 2014. Production and enrichment of chironomid larva with different levels of vitamin C and effects on performance of Persian sturgeon larvae. North American Journal of Aquaculture, 76: 289–295. doi: 10.1080/1522205 5.2014.911224
Hamza N., Mhetli M. and Kestemont P. 2007. Effects of weaning age and diets on ontogeny of digestive activities and structures of pikeperch (Sander lucioperca) larvae. Fish Physiology and Biochemistry, 33: 121–133. doi: 10.1007/s10695-006-9123-4
Hoseini S.M., Perez-Jimenez A., Costas B., Azeredo R. and Gesto M. 2019. Physiological roles of tryptophan in teleosts: Current knowledge and perspectives for future studies. Reviews in Aquaculture, 11: 3–24. doi: 10.11 11/raq.12223
Hurvitz A., Jackson K., Degan G. and Levavi-Sivan B. 2007. Use of endoscopy for gender and ovarian stage determinations in Russian sturgeon (Acipenser gueldenstaedtii) grown in aquaculture. Aquaculture, 270: 158–166. doi: 10.1016/j.aquaculture. 2007.05.020
IUCN. 2022. Red List of Threatened Species, Version 2022. The International Union for Conservation of Nature’s Red List of Threatened Species (IUCN). Retrieved August 31, 2025, from https://www.iucnredlist.org.
Kabir M.A., Ghaedi A., Talpur A.D. and Hashim R. 2015. Effect of dietary protein levels on reproductive development and distribution of amino acids in the body tissues of female Pangasianodon hypophthalmus (Sauvage,  1878) broodstock in captivity. Aquaculture Research, 46: 1736–1747. doi: 10.1111/are.12 326
Kalbassi M.R., Abdollahzadeh E. and Salari-Joo H. 2013. A review on aquaculture development in Iran. Ecopersia, 1: 159–178.
Kim D.I. 2023. A study on the metabolic rate change pattern in F2 hybrid sturgeon, the bester (Huso huso and Acipenser ruthenus), during the early developmental stage. Fishes, 8(2): 1–12 (113). doi: 10.3390/fishes8020113
Kolman R. and Kapusta A. 2018. Food characteristics and feeding management on sturgeon with a special focus on the Siberian sturgeon. P: 75–84. In: Williot P., Nonnotte G. and Chebanov M. (Eds.). The Siberian Sturgeon (Acipenser baerii, Brandt, 1869), Vol. 2: Farming. Springer International Publishing, USA. doi: 10.10 07/978-3-319-61676-6_5
Miandare H.K., Farahmand H., Akbarzadeh A., Ramezanpour S., Kaiya H., Miyazato M., Rytkonen K.T. and Nikinmaa M. 2013. Developmental transcription of genes putatively associated with growth in two sturgeon species of different growth rate. General and Comparative Endocrinology, 182: 41–47. doi: 10.1016/j.ygcen.2012.11. 013
Mohseni M., Pourkazemi M., Hassani S.H., Okorie O.E., Min T.S. and Bai S.C. 2012. Effects of different three live foods on growth performance and survival rates in beluga (Huso huso) larvae. Iranian Journal of Fisheries Sciences, 11: 118–131.
Najdegerami E.H., Baruah K., Shiri A., Rekecki A., Van Den Broeck W., Sorgeloos P., Boon N., Bossier P. and De Schryver P. 2015. Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly‐β‐hydroxybutyrate (PHB): Effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquaculture Research, 46: 801–812. doi: 10.1111/are.12231
Nath S., Samanta S. and Das S. 2021. Effectiveness of chironomid larvae in compare to other fish foods on growth parameters and body protein of two economically important fishes. Alinteri Journal of Agriculture Sciences, 36(2): 147–155. doi: 10.47059/alinteri/V36 I2/AJAS21128
Noori F., Takami G.A., Van Speybroeck M., Van Stappen G., Shiri‐Harzevili A.R. and Sorgeloos P. 2011. Feeding Acipenser persicus and Huso huso larvae with Artemia urmiana nauplii enriched with highly unsaturated fatty acids and vitamin C: Effect on growth, survival and fatty acid profile. Journal of Applied Ichthyology, 27: 781–786. doi: 10.1111/j.1439-0426.2010.01647. x
Orban E., Di Lena G., Ricelli A., Paoletti F., Casini I., Gambelli L. and Caproni R. 2000. Quality characteristics of sharpsnout sea bream (Diplodus puntazzo) from different intensive rearing systems. Food Chemistry, 70: 27–32. doi: 10.1016/S0956-7135(99)00112-7
Policar T., Stejskal V., Kristan J., Podhorec P., Svinger V. and Blaha M. 2013. The effect of fish size and stocking density on the weaning success of pond-cultured pikeperch Sander lucioperca L. juveniles. Aquaculture International, 21: 869–882. doi: 10. 1007/s10499-012-9563-z
Ronnestad I., Thorsen A. and Nigel Finn R. 1999. Fish larval nutrition: A review of recent advances in the roles of amino acids. Aquaculture, 177: 201–216. doi: 10.1016/S0044-8486(99)00082-4
Rosenlund G. and Halldorsson O. 2007. Cod juvenile production: Research and commercial developments. Aquaculture, 268(1): 188–194. doi: 10.1016/j. aquaculture.2007.04.040
Shakourian M., Pourkazemi M., Yazdani Sadati M.A., Hassani M.H.S., Pourali H.R. and Arshad U. 2011. Effects of replacing live food with formulated diets on growth and survival rates in Persian sturgeon (Acipenser persicus) larvae. Journal of Applied Ichthyology, 27: 771–774. doi: 10.1111/j.1439-0426.2010.01632. x
Soosean C., Marimuthu K., Sudhakaran S. and Xavier R. 2010. Effect of mangosteen (Garcinia mangostana L.) extracts as a feed additive on growth and hematological parameters of African catfish (Clarias gariepinus) fingerlings. European Review for Medical and Pharmacological Sciences, 14: 605–611.
Sorgeloos P., Dhert P. and Candreva P. 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200: 147–159. doi: 10.1016/S0044-8486(01)00698-6
Teletchea F. 2019. Fish domestication in aquaculture: Reassessment and emerging questions. Cybium, 43: 7–15. doi: 10.26028/cybium/2019-43 1-001
Teodosio R., Aragao C., Conceiçao L.E.C., Dias J. and Engrola S. 2022. Metabolic fate is defined by amino acid nature in gilthead seabream fed different diet formulations. Animals, 12(13): 1–14 (1713). doi: 10.3390/ani12131713
Valentine S.A., Bauman J.M. and Scribner K.T. 2017. Effects of alternative food types on body size and survival of hatchery-reared Lake Sturgeon larvae. North American Journal of Aquaculture, 79: 275–282. doi: 10.1080/152220 55.2017.1330788
Vasilyeva L.M., Elhetawy A.I.G., Sudakova N.V. and Astafyeva S.S. 2019. History, current status and prospects of sturgeon aquaculture in Russia. Aquaculture Research, 5: 979–993. doi: 10.1111/ are.13997
Volkman E.T., Pangel K.L., Rajchel D.A. and Sutton T.M. 2004. Hatchery performance butes of juvenile lake sturgeon fed two attrinatural food types. North American Journal of Aquaculture, 66: 105–112. doi: 10.1577/A03-047.1
Wang Q., Cheng L., Liu J., Li Z., Xie S. and De Silva S.S. 2015. Freshwater aquaculture in PR China: Trends and prospects. Reviews in Aquaculture, 7: 283–302. doi: 10.1111/raq.12086
Williot P., Brun R., Rouault T., Pelard M. and Mercier D. 2005. Attempts at larval rearing of the endangered western European sturgeon, Acipenser sturio (Acipenseridae), in France. Cybium, 29: 381–387.
Zhao F., Zhuang P., Zhang L. and Shi Z. 2010. Biochemical composition of juvenile cultured vs. wild silver pomfret, Pampus argenteus: Determining the diet for cultured fish. Fish Physiology and Biochemistry, 36: 1105–1111. doi: 10.1007/s10695-010-9388-5