ساخت کمپلکس کیتوزان- ملانین از ضایعات دریایی و ارزیابی فعالیت جاذب پرتوی فرابنفش آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زیست‌شناسی دریا، گروه زیست‌شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 استاد گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران

3 استاد گروه شیمی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

10.22124/japb.2024.24296.1493

چکیده

پرتوی فرابنفش خورشید تاثیر بسیار منفی و خطرناکی بر پوست انسان می‌گذارد و باعث ایجاد سرطان پوست می‌شود. ضدآفتاب‌های معمولی به دلیل داشتن ترکیبات شیمیایی مشکلاتی را در برخی افراد ایجاد می‌کنند که این امر تقاضا برای ضدآفتاب‌های حاوی مواد طبیعی را افزایش داده است. در این راستا و به منظور دستیابی به ترکیبات طبیعی ایمن ضدآفتاب، از دو پلیمر کیتوزان و ملانین به عنوان فیلتر پرتوی فرابنفش (UV) در کرم‌های ضدآفتاب، استفاده شد. ابتدا، کیتوزان از ضایعات میگو و ملانین از جوهر نرم‌تن مرکب استخراج و در قالب کمپلکس کیتوزان- ملانین ساخته شد. در ادامه، فعالیت جاذب پرتوی فرابنفش کمپلکس به دست آمده به روش طیف‌سنجی و با استفاده از دستگاه اسپکتروفتومتری مورد بررسی قرار گرفت. سنجش میزان SPF (در طول موج 290 تا 320 نانومتر) نشان داد که این ترکیب دارای SPF 6/22 است. از نتایج این پژوهش می‌توان چنین نتیجه گرفت که کمپلکس کیتوزان- ملانین به دلیل عملکرد زیستی و عدم سمیت می‌تواند به عنوان یک جایگزین مناسب برای ترکیبات شیمیایی موجود در ضدآفتاب‌ها و محصولات آرایشی- بهداشتی دیگر مورد توجه قرار گیرد.

کلیدواژه‌ها

موضوعات


Aliev G., Solis-Herrera A., Li Y., Kaminsky Y.G., Yakhno N.N., Nikolenko V.N., Zamyatnin Jr. A.A., Benberin V.V. and Bachurin S.O. 2013. Human photosynthesis, the ultimate answer to the long term mystery of Kleiber’s law or E=M 3/4: Implication in the context of gerontology and neurodegenerative diseases. Open Journal of Psychiatry, 3(4): 408–421. doi: 10. 4236/ojpsych.2013.34045
Aneesh P., Anandan R., Kumar L. R., Ajeeshkumar K., Kumar K. A. and Mathew S. 2020. A step to shell biorefinery- Extraction of astaxanthin-rich oil, protein, chitin, and chitosan from shrimp processing waste. Biomass Conversion and Biorefinery, 13(1): 205–214. doi: 10.1007/s13399-020-01074-5
Augustine L.F., Nair K.M. and Kulkarni B. 2021. Sun exposure as a strategy for acquiring vitamin D in developing countries of tropical region: Challenges & way forward. Indian Journal of Medical Research, 154(3): 423–432. doi: 10. 4103/ijmr.ijmr_1244_18
Bolaji B. and Huan Z. 2013. Ozone depletion and global warming: Case for the use of natural refrigerant- A review. Renewable and Sustainable Energy Reviews, 18: 49–54. doi: 10.1016/j.rser.2012. 10.008
Brenner M. and Hearing V.J. 2008. The protective role of melanin against UV damage in human skin. Photochemistry and Photobiology, 84(3): 539–549. doi: 10.1111/j.1751-1097.2007.00226.x
Centeno S.A. and Shamir J. 2008. Surface enhanced Raman scattering (SERS) and FTIR characterization of the Sepia melanin pigment used in works of art. Journal of Molecular Structure, 873(1-3): 149–159. doi: 10.1016/j. molstruc.2007.03.026
Chen S., Wang J., Xue C., Li H., Sun B., Xue Y. and Chai W. 2010. Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis. Carbohydrate Polymers, 81(3): 560–566. doi: 10.1016/j.carbpol.20 10.03.009
Dong H., Song W., Wang C., Mu C. and Li R. 2017. Effects of melanin from Sepiella maindroni ink (MSMI) on the intestinal microbiome of mice. BMC Microbiology, 17(1): 1–10. doi: 10. 1186/s12866-017-1058-7
Donglikar M.M. and Deore S.L. 2016. Sunscreens: A review. Pharmacognosy Journals, 8(3): 171–179. doi: 10.5530/pj.2016.3.1
Dos Santos A.P., Seta J.H.H., Kuhnen V.V. and Sanches E.G. 2020. Antifouling alternatives for aquaculture in tropical waters of the Atlantic Ocean. Aquaculture Reports, 18: 1–8 (100477). doi: 10. 1016/j.aqrep.2020.100477
El-Naggar N.E.A. and El-Ewasy S.M. 2017. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific Reports, 7(1): 1–19. doi: 10.1038/srep42129
Geng J., Tang W., Wan X., Zhou Q., Wang X.J., Shen P., Lei T.C. and Chen X.D. 2008. Photoprotection of bacterial‐derived melanin against ultraviolet A-induced cell death and its potential application as an active sunscreen. Journal of the European Academy of Dermatology and Venereology, 22(7): 852–858. doi: 10.1111/j.1468-3083.2007.02574.x
Geoffrey K., Mwangi A. and Maru S. 2019. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharmaceutical Journal, 27(7): 1009–1018. doi: 10.1016/j.jsps.2019. 08.003
Ghattavi S., Homaei A., Kamrani E., Saberi D. and Daliri M. 2023. Fabrication of antifouling coating based on chitosan-melanin hybrid nanoparticles as sustainable and antimicrobial surface. Progress in Organic Coatings, 174: 107327. doi: 10.1016/j.porgcoat.2022.107327
Ghorbel-Bellaaj O., Younes I., Maalej H., Hajji S. and Nasri M. 2012. Chitin extraction from shrimp shell waste using Bacillus bacteria. International Journal of Biological Macromolecules, 51(5): 1196–1201. doi: 10.1016/j.ijbiomac. 2012.08.034
Hisem D., Hrouzek P., Tomek P., Tomsickova J., Zapomelova E., Skacelova K., Lukesova A. and Kopecky J. 2011. Cyanobacterial cytotoxicity versus toxicity to brine shrimp Artemia salina. Toxicon, 57(1): 76–83. doi: 10.1016/j.toxicon. 2010.10.002
Hoel D.G., Berwick M., De Gruijl F.R. and Holick M.F. 2016. The risks and benefits of sun exposure 2016. Dermato-Endocrinology, 8(1): 1–17 (e1248325). doi: 10.10 80/19381980.2016.1248325
Huang S., Pan Y., Gan D., Ouyang X., Tang S., Ekunwe S.I. and Wang H. 2011. Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Medicinal Chemistry Research, 20(4): 475–481. doi: 10.1007/s000 44-010-9341-2
Jang M.K., Kong B.G., Jeong Y.I., Lee C.H. and Nah J.W. 2004. Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources. Journal of Polymer Science (A), 42(14): 3423–3432. doi: 10.1002/ pola.20176
Khayrova A., Lopatin S. and Varlamov V. 2021. Obtaining chitin, chitosan and their melanin complexes from insects. International Journal of Biological Macromolecules, 167: 1319–1328. doi: 10.1016/j.ijbiomac.2020.11.086
Knidri H.E., Dahmani J., Addaou A., Laajeb A. and Lahsini A. 2019. Rapid and efficient extraction of chitin and chitosan for scale-up production: Effect of process parameters on deacetyl-ation degree and molecular weight. International Journal of Biological Macromolecules, 139: 1092–1102. doi: 10.1016/j.ijbiomac.2019.08.079
Kurian N., Nair H. and Bhat S. 2014. Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96m depth (Sagar Sampada cruise# 305). International Journal of Current Biotechnology, 2(5): 6–11.
Liang Y., Pakdel E., Zhang M., Sun L. and Wang X. 2019. Photo-protective properties of alpaca fiber melanin reinforced by rutile TiO2 nanoparticles: A study on wool fabric. Polymer Degradation and Stability, 160: 80–88. doi: 10.1016/ j.polymdegradstab.2018.12.006
Liang Y., Sun L. and Wang X. 2018. Photodegradation and aggregation prevention of natural melanin nanoparticles by silica coating method. Journal of Materials Science and Chemical Engineering, 6(1): 1–10.
Magarelli M., Passamonti P. and Renieri C. 2010. Purification, characterization and analysis of sepia melanin from commercial sepia ink (Sepia officinalis). Revista CES Medicina Veterinaria y Zootecnia, 5(2): 18–28. doi: 3214/ 321428104002
Mbonyiryivuze A., Nuru Z., Ngom B.D., Mwakikunga B.W., Dhlamini S.M., Park E. and Maaza M. 2015. Morphological and chemical composition characterization of commercial Sepia melanin. American Journal of Nanomaterials, 3(1): 22–27. doi: 10.12691/ajn-3-1-3
Mohammed M.H., Williams P.A. and Tverezovskaya O. 2013. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids, 31(2): 166–171. doi: 10.1016/j.foodhyd.2012.10.021
Morsy R., Ali S.S. and El-Shetehy M. 2017. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria. Journal of Molecular Structure, 1143: 251–258. doi: 10.1016/j.mol struc.2017.04.090
Perna G., Lasalvia M., Gallo C., Quartucci G. and Capozzi V. 2013. Vibrational characterization of synthetic eumelanin by means of Raman and surface enhanced Raman scattering. The Open Surface Science Journal, 5(1): 1–8. doi: 10.2174/1876531901305010001
Piccirillo C., Rocha C., Tobaldi D., Pullar R., Labrincha J., Ferreira M., Castro P.M. and Pintado M. 2014. A hydroxyapatite-Fe2O3 based material of natural origin as an active sunscreen filter. Journal of Materials Chemistry (B), 2(36): 5999–6009. doi: 10.1039/C4TB0098 4C
Rafique A., Zia K.M., Zuber M., Tabasum S. and Rehman S. 2016. Chitosan functionalized poly (vinyl alcohol) for prospects biomedical and industrial applications: A review. International Journal of Biological Macromolecules, 87: 141–154. doi: 10.1016/j.ijbiomac.20 16.02.035
Rincon-Fontan M., Rodriguez-Lopez L., Vecino X., Cruz J. and Moldes A. 2018. Design and characterization of greener sunscreen formulations based on mica powder and a biosurfactant extract. Powder Technology, 327: 442–448. doi: 10.1016/j.powtec.20 17.12.093
Saini A.S., Tripathi A. and Melo J.S. 2015. On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly (AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties. RSC Advances, 5(106): 87206–87215. doi: 10.1039/C5RA18 965A
Sajjan S., Kulkarni G., Yaligara V., Lee K. and Karegoudar T. 2010. Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK. Journal of Microbiology and Biotechnology, 20(11): 1513–1520. doi: 10.4014/jmb.1002.02006
Shariatinia Z. and Jalali A.M. 2018. Chitosan-based hydrogels: Preparation, properties and applications. International Journal of Biological Macromolecules, 115: 194–220. doi: 10.1016/j.ijbio mac.2018.04.034
Supanakorn G., Thiramanas R., Mahatnirunkul T., Wongngam Y. and Polpanich D. 2022. Polydopamine-based nanoparticles for safe sunscreen protection factor products with enhanced performance. ACS Applied Nano Materials, 5(7): 9084–9095. doi: 10. 1021/acsanm.2c01395
Tarangini K. and Mishra S. 2014. Production of melanin by soil microbial isolate on fruit waste extract: Two step optimization of key parameters. Biotechnology Reports, 4: 139–146. doi: 10.1016/j. btre.2014.10.001
Wang C., Wang D., Dai T., Xu P., Wu P., Zou Y., Yang P., Hu J., Li Y. and Cheng Y. 2018. Skin pigmentation‐inspired poly-dopamine sunscreens. Advanced Functional Materials, 28(33): 1–9 (1802127). doi: 10.1002/adfm.20180 2127
Wang L.F. and Rhim J.W. 2019. Isolation and characterization of melanin from black garlic and sepia ink. LWT- Food Science and Technology, 99: 17–23. doi: 10.10 16/j.lwt.2018.09.033
Yang X., Wang Z., Zhang Y. and Liu W. 2020. A biocompatible and sustainable anti-ultraviolet functionalization of cotton fabric with nanocellulose and chitosan nanocomposites. Fibers and Polymers, 21(11): 2521–2529. doi: 10.1007/s12221-020-1339-x
Yao Z., Qi J. and Wang L. 2012. Isolation, fractionation and characterization of melanin‐like pigments from chestnut (Castanea mollissima) shells. Journal of Food Science, 77(6): 671–676. doi: 10.11 11/j.1750-3841.2012.02714.x
Yaqoob A.A., Ahmad A., Ibrahim M.N.M. and Rashid M. 2021. Chitosan-based nanocomposites for gene delivery: Application and future perspectives. P: 245–262. In: Bhawani S.A., Karim Z. and Jawaid M. (Eds.). Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering. Elsevier Science, Netherlands. doi: 10.1016/B978-0-12-821230-1.00001-3