تحلیل بیوانفورماتیکی شبکه ژنی و مسیر‏های زیستی مرتبط با بیماری لکه سفید (WSD) در میگوی سفید غربی (Litopenaeus vannamei )

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشکده میگوی کشور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بوشهر، ایران

2 استادیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

10.22124/japb.2024.28614.1554

چکیده

ویروس سندروم لکه سفید (WSSV) عامل بیماری لکه سفید (WSD) است که طی ده‏های اخیر موجب ضررهای اقتصادی زیادی در صنعت جهانی پرورش میگو شده است. هدف از این پژوهش، شناسایی مسیر‏های زیستی موثر و ژن‏های کلیدی مرتبط با بیماری لکه سفید در میگوی سفید غربی (Litopenaeus vannamei) بود. داده‌های ریز‌آرایه شامل 6 نمونه از بافت هپاتوپانکراس میگوهای سالم و 6 نمونه از بافت هپاتوپانکراس میگوهای آلوده به WSSV از پایگاه داده‌ GEO با شماره دسترسی GSE4955 استخراج و با استفاده از ابزار GEO2R تجزیه و تحلیل شدند. سپس ژن‌های افتراقی با بیان معنی‏دار مشخص شدند. از نرم‌افزار آنلاین STRING به منظور ساخت شبکه بین ژن‌های افتراقی استفاده شد. سپس ژن‏های کلیدی با استفاده از افزونه CytoHubba در نرم‌افزار Cytoscape و با روش حداکثر مرکزیت دسته (MCC) شناسایی شدند. عملکرد پیش‏بینی شده ژن‏های کلیدی در ارتباط با بیوسنتز پروستاگلاندین، فاکتور هسته‏ای کاپا B (NFKB)، پروتئین کیناز فعال شده با میتوژن (MAPK) و گیرنده گاما فعال شده با تکثیر پراکسی‏زوم (PPARG) بود. به نظر می‏رسد مسیر‏های زیستی مربوط به این ژن‏ها به‌ویژه ژن‏های NFKB و MAPK می‏توانند برای شناسایی نشانگر‏های زیستی مرتبط با بیماری لکه سفید، تشخیص و یا طراحی مهارکننده‏ علیه آن بیماری مفید باشند.

کلیدواژه‌ها

موضوعات


Aoki T., Wang H.C., Unajak S., Santos M.D., Kondo H. and Hirono I. 2011. Microarray analyses of shrimp immune responses. Marine Biotechnology, 13: 629–638. doi: 10.1007/s10126-010-9291-1
Barazandeh A., Mohammadabadi M., Ghaderi-Zefrehei M. and Nezamabadi-Pour H. 2016. Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech Journal of Animal Science, 61(11): 487–495. doi: 10. 17221/78/2015-CJAS
Bordbar F., Mohammadabadi M., Jensen J., Xu L., Li J. and Zhang L. 2022. Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing analyses. Animals, 12(9): 1–14 (1103). doi: 10.3390/ani12091103
Chou M.Y., Hsiao C.D., Chen S.C., Chen I.W., Liu S.T. and Hwang P.P. 2008. Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. Journal of Experimental Biology, 211(19): 3077–3084. doi: 10.1242/jeb.019950
Darias M.J., Zambonino-Infante J.L., Hugot K., Cahu C. and Mazurais D. 2008. Gene expression patterns during the larval development of European sea bass (Dicentrarchus labrax) by microarray analysis. Marine Biotechnology, 10(4): 416–428. doi: 10.1007/s10126-007-9078-1
De La Vega E., Hall M.R., Wilson K.J., Reverter A., Woods R.G. and Degnan B.M. 2007. Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiological Genomics, 31(1): 126–138. doi: 10.1152/physiolgenomics.00068.2007
Desrina H., Prayitno S.B., Verdegem M.C., Verreth J.A. and Vlak J.M. 2022. White spot syndrome virus host range and impact on transmission. Reviews in Aquaculture, 14(4): 1843–1860. doi: 10.1111/raq.12676
Dhar A., Dettori A., Roux M., Klimpel K. and Read B. 2003. Identification of differentially expressed genes in shrimp (Penaeus stylirostris) infected with white spot syndrome virus by cDNA microarrays. Archives of Virology, 148: 2381–2396. doi: 10.1007/s00705-003-0172-z
Di Cara F., Andreoletti P., Trompier D., Vejux A., Bulow M.H., Sellin J., Lizard G., Cherkaoui-Malki M. and Savary S. 2019. Peroxisomes in immune response and inflammation. International Journal of Molecular Sciences, 20(16): 1–29 (3877). doi: 10.3390/ ijms20163877
Di Costanzo F., Di Dato V., Ianora A. and Romano G. 2019. Prostaglandins in marine organisms: A review. Marine Drugs, 17(7): 1–23 (428). doi: 10.33 90/md17070428
Fagutao F.F., Yasuike M., Caipang C.M., Kondo H., Hirono I., Takahashi Y. and Aoki T. 2008. Gene expression profile of hemocytes of kuruma shrimp, Marsupenaeus japonicus following peptidoglycan stimulation. Marine Biotechnology, 10: 731–740. doi: 10.1007/s10126-008-9110-0
Gomez-Abellan V. and Sepulcre M.P. 2016. The role of prostaglandins in the regulation of fish immunity. Molecular Immunology, 69: 139–145. doi: 10. 1016/j.molimm.2015.09.022
Huang X.D., Yin Z.X., Jia X.T., Liang J.P., Ai H.S., Yang L.S., Liu X., Wang P.H., Li S.D. and Weng S.P. 2010a. Identification and functional study of a shrimp dorsal homologue. Developmental and Comparative Immunology, 34(2): 107–113. doi: 10.1016/j.dci. 2009.08.009
Huang X.D., Zhao L., Zhang H.Q., Xu X.P., Jia X.T., Chen Y.H., Wang P.H., Weng S.P., Yu X.Q. and Yin Z.X. 2010b. Shrimp NF-κB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity. Virology, 406(2): 176–180. doi: 10.1016/j.virol.2010.06.046
Islam S.I., Mou M.J., Sanjida S. and Mahfuj S. 2023. A review on molecular detection techniques of white spot syndrome virus: Perspectives of problems and solutions in shrimp farming. Veterinary Medicine and Science, 9(2): 778–801. doi: 10.1002/vms3.9 79
Jeukens J., Bittner D., Knudsen R. and Bernatchez L. 2009. Candidate genes and adaptive radiation: Insights from transcriptional adaptation to the limnetic niche among coregonine fishes (Coregonus spp., Salmonidae). Molecular Biology and Evolution, 26(1): 155–166. doi: 10.1093/molbev/msn235
Kaji T., Yoshida S., Kawai K., Fuchigami Y., Watanabe W., Kubodera H. and Kishimoto T. 2010. ASK3, a novel member of the apoptosis signal-regulating kinase family, is essential for stress-induced cell death in HeLa cells. Biochemical and Biophysical Research Communications, 395(2): 213–218. doi: 10.1016/j.bbrc.2010. 03.164
Kelly D., Campbell J.I., King T.P., Grant G., Jansson E.A., Coutts A.G., Pettersson S. and Conway S. 2004. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunology, 5(1): 104–112. doi: 10.1038/ni1018
Khabiri A., Toroghi R., Mohammadabadi M. and Tabatabaeizadeh S.E. 2023. Introduction of a Newcastle disease virus challenge strain (sub-genotype VII. 1.1) isolated in Iran. Veterinary Research Forum, 14(4): 221–228. doi: 10.30466/vrf.2022.548 152.3373
Lan Y.S., Xu X., Yang F. and Zhang X. 2006. Transcriptional profile of shrimp white spot syndrome virus (WSSV) genes with DNA microarray. Archives of Virology, 151(9): 1723–1733. doi: 10.1007/s0 0705-006-0751-x
Leaver M.J., Villeneuve L.A., Obach A., Jensen L., Bron J.E., Tocher D.R. and Taggart J.B. 2008. Functional genomics reveals increases in cholesterol bio-synthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genomics, 9: 1–15. doi: 10.1186/14 71-2164-9-299
Liu W.J., Chang Y.S., Wang C.H., Kou G.H. and Lo C.F. 2005. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cyclo-heximide-treated shrimp. Virology, 334(2): 327–341. doi: 10.1016/j.vir ol.2005.01.047
Lu J., Hsiao Y., Wu J., Bondad-Reantaso M., Jones J., Corsin F. and Aoki T. 2011. Applications of shrimp immune DNA microarray in aquaculture. P: 241–252. In: Bondad-Reantaso M.G., Jones J.B., Corsin F. and Aoki T. (Eds.). Diseases in Asian Aquaculture VII. Asian Fisheries Society, Malaysia.
Luo S., Huang Y., Xie F., Huang X., Liu Y., Wang W. and Qin Q. 2015. Molecular cloning, characterization and expression analysis of PPAR gamma in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge. Fish and Shellfish Immunology, 43(2): 310–324. doi: 10.1016/j.fsi.20 15.01.003
Marks H., Ren X.Y., Sandbrink H., Van Hulten M.C. and Vlak J.M. 2006. In silico identification of putative promoter motifs of white spot syndrome virus. BMC Bioinformatics, 7: 1–13. doi: 10.11 86/1471-2105-7-309
Marks H., Vorst O., Van Houwelingen A.M., Van Hulten M.C. and Vlak J.M. 2005. Gene-expression profiling of white spot syndrome virus in vivo. Journal of General Virology, 86(7): 2081–2100. doi: 10.1099/vir.0.80895-0
Millard R.S., Ellis R.P., Bateman K.S., Bickley L.K., Tyler C.R., Van Aerle R. and Santos E.M. 2021. How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focused on white spot disease. Journal of Invertebrate Pathology, 186: 1–13 (107369). doi: 10.1016/j.jip.2020.107 369
Peatman E., Terhune J., Baoprasertkul P., Xu P., Nandi S., Wang S., Somridhivej B., Kucuktas H., Li P. and Dunham R. 2008. Microarray analysis of gene expression in the blue catfish liver reveals early activation of the MHC class I pathway after infection with Edwardsiella ictaluri. Molecular Immunology, 45(2): 553–566. doi: 10.1016/j.moli mm.2007.05.012
Pongsomboon S., Tang S., Boonda S., Aoki T., Hirono I., Yasuike M. and Tassanakajon A. 2008. Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus. BMB Reports, 41(9): 670–677. doi: 10.5483/bmbrep.2008. 41.9.670
Qiu W., Zhang S., Chen Y.G., Wang P.H., Xu X.P., Li C.Z., Chen Y.H., Fan W.Z., Yan H. and Weng S.P. 2014. Litopenaeus vannamei NF-κB is required for WSSV replication. Developmental and Comparative Immunology, 45(1): 156–162. doi: 10.1016/j.dci. 2014.02.016
Robalino J., Almeida J.S., McKillen D., Colglazier J., Trent III H.F., Chen Y.A., Peck M.E., Browdy C.L., Chapman R.W., Warr G.W. and Gross P.S. 2007. Insights into the immune transcriptome of the shrimp Litopenaeus vannamei: Tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiological Genomics, 29(1): 44–56. doi: 10.11 52/physiolgenomics.00165.2006
Tarca A.L., Romero R. and Draghici S. 2006. Analysis of microarray experiments of gene expression profiling. American Journal of Obstetrics and Gynecology, 195(2): 373–388. doi: 10.1016/j.ajog.2006.07.001
Wagner E.F. and Nebreda A.R. 2009. Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews Cancer, 9(8): 537–549. doi: 10.10 38/nrc2694
Wang B., Li F., Dong B., Zhang X., Zhang C. and Xiang J. 2006. Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Marine Biotechnology, 8: 491–500. doi: 10. 1007/s10126-005-6136-4
Wang H.C., Wang H.C., Kou G.H., Lo C.F. and Huang W.P. 2007. Identification of icp11, the most highly expressed gene of shrimp white spot syndrome virus (WSSV). Diseases of Aquatic Organisms, 74(3): 179–189. doi: 10.3354/dao074179
Wang S., Li H., Zhu P., Fu Q., Yin B., Li Q., Chen R., Jiang  X., Weng S. and He J. 2021. MAPKKK15 gene from shrimp Litopenaeus vannamei is transcribed in larva development stages and contributes to WSSV pathogenesis. Aquaculture, 534: 1–31 (736324). doi: 10.1016/j.aqua culture.2020.736324
Zeng Y. and Lu C.P. 2009. Identification of differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA micro-arrays. Fish and Shellfish Immunology, 26(4): 646–650