Aguedo M., Beney L., Wache Y., Belin J.M. and Gervais P. 2002. Interaction of odorous lactones with phospholipids: Implications in toxicity towards producing yeast cells. Biotechnology, 24: 1975–1979. doi: 10.1023/A:10211298000 80
Aoki H., Miyamoto N., Furuya Y., Mankura M., Endo Y. and Fujimoto K. 2002. Incorporation and accumulation of docosa-hexaenoic acid from the medium by
Pichia methanolica HA-32. Bioscience Biotechnology Biochemistry, 66: 2632–2638. doi:
10.1271/bbb.66.2632
Ayiku S., Shen J., Tan B., Dong X. and Liu H. 2020. Effects of dietary yeast culture on shrimp growth, immune response, intestinal health and disease resistance against
Vibrio harveyi. Fish and Shellfish Immunology, 102: 286–295. doi:
10.1016/j.fsi.2020.04.036
Baruah K., Ranjan J., Sorgeloos P. and Bossier P. 2010. Efficacy of heterologous and homologous heat shock protein 70s as protective agents to
Artemia franciscana challenged with
Vibrio campbellii. Fish and Shellfish Immunology, 1(29): 733–739. doi:
10.1016/j.fsi. 2010.07.011
Bossie M.A. and Martin C.E. 1989. Nutritional regulation of yeast delta-9 fatty acid desaturase activity. Journal of Bacteriology, 171(12): 6409–6413. doi:
10.1128/ jb.171.12.6409-6413.1989
Brown A.N., Smith K., Samuels T.A., Lu J., Obare S.O. and Scott M.E. 2012. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of
Pseudomonas aeruginosa and
Enterobacter aerogenes and methicillin-resistant
Staphylococcus aureus. Applied and Environmental Microbiology, 78(8): 2768–2774. doi:
10.1128/ AEM.06513-11
Chen B., Pan Y., Chen Y., Zhang Z., Yang Z., Zheng M., Lu T., Jiang L. and Qian H., 2022. TiO
2 nanoparticles exert an adverse effect on aquatic microbial communities. Science of the Total Environment, 831: 1–11 (154942). doi:
10.1016/j.scitotenv.2022.154942
Chen Y., Sun Z., Liang Z., Xie Y., Su J., Luo Q., Zhu J., Lin Q., Han T. and Wang A. 2020. Effects of dietary fish oil replacement by soybean oil and L-carnitine supplementation on growth performance, fatty acid composition, lipid metabolism and liver health of juvenile largemouth bass,
Micropterus salmoides. Aquaculture, 520: 734596. doi:
10.1016/j.aquaculture.2019.734596
Daghan H. 2018. Effects of TiO
2 nanoparticles on maize (
Zea mays L.) growth, chlorophyll content and nutrient uptake. Applied Ecology and Environmental Research, 16: 6873–6883. doi:
10.15666/aeer/160 5_ 68736883
Duan L.L. Shi Y., Jiang R., Yang Q., Wang Y.Q., Liu P.T., Duan C.Q. and Yan G.L. 2015. Effects of adding unsaturated fatty acids on fatty composition of Saccharomyces cerevisiae and compounds in wine on fatty acid major volatile. South Africa of Enology and Viticulture, 36(2): 285–295. doi: 10.21548/36‑2‑962
Ernesto Cesena C., Vega-Villasante F., Aguirre-Guzman G., Luna-Gonzalez A. and Campa-Cordova A. 2021. Update on the use of yeast in shrimp aquaculture: A minireview. International Aquatic Research, 13(1): 1–16. doi:
10.22034/iar.2021.1904524.1066
Ferraz L., Sauer M., Sousa M.J. and Branduardi P. 2021. The plasma membrane at the cornerstone between flexibility and adaptability: Implication for Saccharomyces cerevisiae as a cell factory. Frontiers in Microbiology, 12: 1–11 (715891). doi: 10.3389/ fmicb.2021.715891
Franken J. and Bauer F.F. 2010. Carnitine supplementation has protective and detrimental effects in Saccharomyces cerevisiae that are genetically mediated. FEMS Yeast Research, 10(3): 270–281. doi: 10.1111/j.1567-1364.2010.00 610.x
Gojznikar J., Zdravkovic B., Vidak M., Leskosek B. and Ferk P. 2022. TiO
2 nanoparticles and their effects on eukaryotic cells: A double-edged sword. International Journal of Molecular Science, 15(23): 1–18 (12353). doi:
10.3390/ ijms232012353
Hoppel C. 2003. The role of carnitine in normal and altered fatty acid metabolism. American Journal of Kidney Diseases, 41: 4–12. doi:
10.1016/S0272-6386(03)00112-4
Hosseini H.R., Manaffar R. and Ghojaie M. 2017. The effect of zinc oxide nanoparticles and ethanol extracts of hyssop (Hyssopus officinalis) on the growth of Saccharomyces cerevisiae. Journal of Animal Environment, 9(2): 297–304.
Jessina G.F., Jaculine-Pereira J. and Petchimuthu M. 2022. Yeast in aquaculture. Biotica Research Today, 4(12): 857–859.
Khataee A. and Mansoori G.A. 2011. Nanostructured Titanium Dioxide Materials: Properties, Preparation and Applications. World Scientific Publishing Company, Singapore. 189P. doi: 10.1142/8325
Leiboritz H.E., Benqrson D.A., Mouqle P.D. and Simpson K.L. 1987. Effects of Artemia lipid function on growth and survival of larval in land liver sides. P: 469–476. In: Sorgeloss P., Begtson D.A., Deelier W. and Japers E. (Eds.). Artemia Research and its Application. University Press, Belgium.
Ma Y., Liu Z., Hao L., Wu J., Qin B., Liang Z., Ma J., Ke H., Yang H., Li Y. and Cao J. 2022. Oral vaccination using
Artemia coated with recombinant
Saccharomyces cerevisiae expressing cyprinid herpesvirus-3 envelope antigen includes protective immunity in common carp (
Cyprinus carpio var. Jian) larvae. Research in Veterinary Science, 130: 184–192. doi:
10.1016/j.rvsc.2020.03.013
Mokhtarnejad L. and Farzaneh M. 2020. A review on yeast roles and applications on biological control of plant diseases [In Persian]. Biocontrol in Plant Protection, 8(1): 137–157. doi:
10.22092/bcpp. 2020.124040
Nielsen J. 2019. Yeast cells handle stress by reprogramming their metabolism. Nature, 572: 184–185. doi: 10.1038/d41586-019-02288-y
Ono Y. and Iwahashi H. 2022. Titanium dioxide nanoparticles impart protection from ultraviolet irradiation to fermenting yeast cells. Biochemistry and Biophysics Reports, 30: 1–5 (101221). doi: 10.1016/j.bbrep.2022.101221
Patnaik P., Nady N., Barlit H., Guihan A. and Labunskyy V.M. 2024. Lifespan regulation by targeting heme signaling in yeast. GeroScience, 46(5): 5235–5245. doi: 10.1007/s11357-024-01218-9
Perricone V., Sandrini S., Irshad N., Savoini G., Comi M. and Agazzi A. 2022. Yeast-derived products: the role of hydrolyzed yeast and yeast culture in poultry nutrition, a review. Animals, 12(11): 1–20 (1426). doi:
10.3390/ani12111426
Pitt J.I. and Hocking A.D. 1997. Fungi and Food Spoilage. Blackie Academic and Professional, UK. 520P. doi: 10.1007/978-0-387-92207-2
Pourbozorgi-Rudsari N., Madadkar-Haghjou M. and Ghiasvand A. 2022. Physiological responses of
Spirulina plantensis to nano-particles of TiO
2 and citrate [In Persian]. Iranian Journal of Plant Biology, 14(1): 39–62. doi:
10.221 08/ijpb.2023.135148.1297
Seifi M.M., Iranmanesh E., Asadollahi M.A. and Arpanaei A. 2020. Biotransformation of benzaldehyde into l-phenylacetyl carbinol using magnetic nano-particles-coated yeast cells. Biotechnology Letters, 42(4): 597–603. doi: 10.1007/s10529-020-02798-0
Serov D.A., Gritsaeva A.V., Ynbaev F.M., Simakin A.V. and Gudkov S.V. 2024. Review of antimicrobial properties of titanium dioxide nanoparticles. International Journal of Molecular Sciences, 25(19): 1–51 (10519). doi:
10.3390/ijms251910 519
Shekarchi B., Nekuei-Fard A. and Manaffar R. 2020. Feeding
Artemia larvae with yeast heat shock proteins 82 (HSPs82) to enhance the resistance against abiotic stresses (hyperosmotic and high temperature). Iranian Journal of Fisheries Science, 19(1): 19–30. doi:
10.22092/ijfs.2019.118229
Stewart G.G. 2017. The structure and function of the yeast cell wall, plasma membrane and periplasm. P: 55–75. In: Stewart G.G. (Ed.). Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Switzerland. doi: 10.1007/978-3-31 9-69126-8_5
Sukmanowski J., Viguie J.R., Nolting B. and Royer F.X. 2005. Light absorption enhancement by nanoparticles. Journal of Applied Physics, 97(10): 1–7. doi:
10.1063/ 1.1899249
Usatii A., Chiselita N. and Efremova N. 2016. The evaluation of nanoparticles ZnO and TiO2 effects on Saccharomyces cerevisiae CNMN-Y-20 yeast strain. Acta Universitatis Cibiniensis Series (E), 85: 85–92. doi: 10.1515/aucft-2016-0007
Vibhute P., Jaabir M. and Sivakamavalli J. 2023. Applications of nanoparticles in aquaculture. P: 127–155. In: Kirthi A.V., Loganathan K. and Karunasagar I. (Eds.). Nanotechnological Approaches to the Advancement of Innovations in Aquaculture. Springer, Switzerland. doi: 10.1007/978-3-031-15519-2_8
Wang R., Lorantfy B., Fusco S., Olson L. and Franzen C.J. 2021. Analysis of methods for quanti-fying yeast cell concentration in complex lignocellulosic ferment-ation processes. Scientific Reports, 11(1): 1–12 (11293). doi: 10.1038/s 41598-021-90703-8
Wang J., Du R., Qin J., Wang S., Wang W., Li H. and Pang Q. 2003. Effect of yeast chromium and L-carnitine on lipid metabolism of broiler chickens. Asian-Australasian Journal of Animal Sciences, 16(12): 1809–1815. doi:
10.5713/ajas.2003.1809
Zhang L., Zhang P., Tan P., Zu D., Wang L., Ding Z. and Shao Q. 2024. Yarrowia lipolytica as a promising protein source for pacific white shrimp (Litopenaeus vannamei) diet: Impact on growth performance, metabolism, antioxidant capacity, and apparent digestibility. Frontiers in Marine Science, 11: 1–12 (1370371