غربالگری موکوس اپیدرمی گاوماهی شنی دریای خزر (Neogobius fluviatilis pallasi) برای یافتن پپتیدهای ضدباکتریایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری شیلات، گروه تکثیر پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دکتری شیلات، مرکز تحقیقات ملی آبزیان آب‌های شور، موسسه تحقیقات علوم شیلاتی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، بافق، ایران

3 دانشیار گروه تکثیر پرورش آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استاد گروه علوم سلولی و ملکولی، آزمایشگاه تحقیقاتی بیوتکنولوژی پروتئین، دانشکده زیست‌شناسی، دانشگاه تهران، تهران، ایران

5 دانشیار گروه تولید و بهره‌برداری آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

6 دانشیار گروه میکروبیولوژی، دانشکده زیست‌شناسی، دانشگاه تهران، تهران، ایران

چکیده

در سال‌های اخیر ظهور و گسترش باکتری‌های مقاوم به چند دارو، موضوع اصلی نگرانی در زمینه‌های پزشکی و سلامت عمومی بوده است. پپتیدهای ضدمیکروبی، پپتیدهای کوتاه زنجیره و عموما دارای بار مثبت و آبگریز هستند که در طیف گسترده‌ای از اشکال زندگی از پروکاریوت‌ها تا یوکاریوت‌ها مانند انسان یافت می‌شوند. معرفی این دسته از پپتیدها، به جهت داشتن برخی مزایا در رفع بعضی از نگرانی‌های جامعه بشری، بسیار نویدبخش بوده است. در این مطالعه برای اولین بار فعالیت ضدمیکروبی موکوس اپیدرمی Neogobius fluviatilis pallasi و کسرهای مبتنی بر اندازه (Size- based Fractions) آن، گزارش شده است. بر اساس نتایج این بررسی، کسر زیر 5 کیلودالتون علیه Bacillus subtilis و Staphylococcus aureus به ترتیب با شعاع بازدارندگی 25/12 و 25/19 میلی‌متر کشنده و بر Pseudomonas aeruginosa، Escherichia coli، Vibrio harveyi و Yersinia ruckeri بی‌اثر گزارش شد. تیمار پروتئولیتیک کسر مزبور با پروتئیناز K فعالیت ضدباکتریایی را به طور کامل از بین برد که تایید کننده ماهیت پروتئینی جزء فعال است. به طور کلی، این نتایج نشان داد که موکوس اپیدرمی گاوماهی شنی دریای خزر یک منبع غنی و با ارزش برای یافتن AMPهای جدید با کاربردهای بالقوه در آبزی‌پروری و پزشکی است.

کلیدواژه‌ها


 Al-Rasheed A., Handool K.O., Garba B., Noordin M.M., Bejo S.K., Kamal F.M. and Daud H.H.M. 2018. Crude extracts of epidermal mucus and epidermis of climbing perch Anabas testudineus and its antibacterial and hemolytic activities. The Egyptian Journal of Aquatic Research, 44(2): 125–129.
Antonioli P., Bachi A., Fasoli E. and Righetti P.G. 2009. Efficient removal of DNA from proteomic samples prior to two-dimensional map analysis. Journal of Chromatography A, 216: 3606–3612.
Bergsson G., Agerberth B., Jornvall H. and Gudmundsson G.H. 2005. Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). The FEBS Journal, 272(19): 4960–4969.
Birkemo G.A., Luders T., Andersen O. Nes I.F. and Nissen-Meyer J. 2003. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochimica et Biophysica Acta- Proteins and Proteomics, 1646(1-2): 207–215.
Bradford M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254.
Broekman D.C., Zenz A., Gudmundsdottir B.K., Lohner K., Maier V.H. and Gudmundsson G.H. 2011. Functional characterization of codCath, the mature cathelicidin antimicrobial peptide from Atlantic cod (Gadus morhua). Peptides, 32(10): 2044–2051.
Cabello F.C., Godfrey H.P., Buschmann A.H. and Dolz H.J. 2016. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases, 16(7): 127–133.
Cabello F.C., Godfrey H.P., Tomova A., Ivanova L., Dolz H., Millanao A. and Buschmann A.H. 2013. Antimicrobial use in aquaculture re‐examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7): 1917–1942.
Cole A. M., Weis P. and Diamond G. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. Journal of Biological Chemistry, 272(18): 12008–12013.
Dong X.Z., Xu H.B., Huang K.X., Liou Q. and Zhou J. 2002. The preparation and characterization of an antimicrobial polypeptide from the loach, Misgurnus anguillicaudatus. Protein Expression and Purification, 26(2): 235–242.
Ebenhan T., Gheysens O., Kruger H.G., Zeevaart J.R. and Sathekge M.M. 2014. Antimicrobial peptides: Their role as infection-selective tracers for molecular imaging. BioMed Research International, 2014(3): 1–15 (67381).
Ellis A.E. 2001. Innate host defense mechanisms of fish against viruses and bacteria. Developmental and Comparative Immunology, 25(8-9): 827–839.
Esteban M.A. 2012. An overview of the immunological defenses in fish skin. International Scholarly Research Notices, 2012: 1–29 (853470).
Fernandes J.M., Kemp G.D., Molle M.G. and Smith V.J. 2002. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochemical Journal, 368(2): 611–620.
Fernandes J.M., Molle G., Kemp G.D. and Smith V.J. 2004. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Developmental and Comparative Immunology, 28(2): 127–138.
Fernandes J.M., Saint N., Kemp G.D. and Smith V.J. 2003. Oncorhyncin III: A potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochemical Journal, 373(2): 621–628.
Garcia-Rodriguez S., Castilla S.A., Machado A. and Ayala A. 2003. Comparison of methods for sample preparation of individual rat cerebrospinal fluid samples prior to two-dimensional polyacrylamide gel electrophoresis. Biotechnology Letters, 25(22): 1899–1903.
Hellio C., Pons A.M., Beaupoil C., Bourgougnon N. and Le Gal Y. 2002. Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. International Journal of Antimicrobial Agents, 20(3): 214–219.
Huang P.H., Chen J.Y. and Kuo C.M. 2007. Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Molecular Immunology, 44(8): 1922–1934.
Jin J.Y., Zhou L., Wang Y., Li Z., Zhao J.G., Zhang Q.Y. and Gui J.F. 2010. Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS One, 5(12): 1–14 (e12883).
Lai Y. and Gallo R.L. 2009. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends in Immunology, 30(3): 131–141.
Liang Y., Guan R., Huang W. and Xu T. 2011. Isolation and identification of a novel inducible antibacterial peptide from the skin mucus of Japanese eel, Anguilla japonica. The Protein Journal, 30(6): 413–421.
Luders T., Birkemo G.A., Nissen-Meyer J., Andersen O. and Nes I.F. 2005. Proline conformation-dependent antimicrobial activity of a proline-rich histone H1 N-terminal peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrobial Agents and Chemotherapy, 49(6): 2399–2406.
Magnadottir B. 2006. Innate immunity of fish (overview). Fish and Shellfish Immunology, 20(2): 137–151.
Malanovic N. and Lohner K. 2016. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals, 9(3): 1–33 (59).
Masso-Silva J.A. and Diamond G. 2014. Antimicrobial peptides from fish. Pharmaceuticals, 7(3): 265–310.
Ming L., Xiaoling P., Yan L., Lili W., Qi W., Xiyong Y., Boyao W. and Ning H. 2007. Purification of antimicrobial factors from human cervical mucus. Human Reproduction, 22(7): 1810–1815.
Nakanishi T., Toda H., Shibasaki Y. and Somamoto T. 2011. Cytotoxic T cells in teleost fish. Developmental and Comparative Immunology, 35(12): 1317–1323.
Nakatsuji T. and Gallo R.L. 2011. Antimicrobial peptides: Old molecules with new ideas. Journal of Investigative Dermatology, 132(3-2): 887–895.
O’neill J.I.M. 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, 20: 1–16.
Oren Z. and Shai Y. 1996. A class of highly potent antibacterial peptides derived from pardaxin, a pore‐forming peptide isolated from Moses sole fish Pardachirus marmoratus. European Journal of Biochemistry, 237(1): 303–310.
Pan C.Y., Peng K.C., Lin C.H. and Chen J.Y. 2011. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. Fish and Shellfish Immunology, 31: 275–285.
Park I.Y., Park C.B., Kim M.S. and Kim S.C. 1998. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Letters, 437(3): 258–262.
Pukala T.L., Bowie J.H., Maselli V.M., Musgrave I.F. and Tyler M.J. 2006. Host-defence peptides from the glandular secretions of amphibians: Structure and activity. Natural Product Reports, 23(3): 368–393.
Rajanbabu V. and Chen J.Y. 2011. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides, 32(2): 415–420.
Rakers S., Niklasson L., Steinhagen D., Kruse C., Schauber J., Sundell K. and Paus R. 2013. Antimicrobial peptides (AMPs) from fish epidermis: Perspectives for investigative dermatology. Journal of Investigative Dermatology, 133(5): 1140–1149.
Rico A., Phu T.M., Satapornvanit K., Min J., Shahabuddin A.M., Henriksson P.J., Murray F.J., Little D.C., Dalsgaard A. and Van Den Brink P.J. 2013. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 412: 231–243.
Robinson T.P., Wertheim H.F., Kakkar M., Kariuki S., Bu D. and Price L.B. 2016. Animal production and antimicrobial resistance in the clinic. The Lancet, 387(10014): 9–15.
Sang Y. and Blecha F. 2008. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Animal Health Research Reviews, 9(2): 227–235.
Schaggerand H. and Von Jagow G. 1987. Tricine-sodium dodecyl sulphatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, (166): 368–379.
Su Y. 2011. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology (B), 158(2): 149–154.
Subramanian S., MacKinnon S.L. and Ross N.W. 2007. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comparative Biochemistry and Physiology (B), 148(3): 256–263.
Subramanian S., Ross N.W. and MacKinnon S.L. 2009. Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L. Marine Biotechnology, 11(6): 748–757.
Valero Y., Chaves-Pozo E., Meseguer J., Esteban M.A. and Cuesta A. 2013. Biological role of fish antimicrobial peptides. P: 31–60. In: Seong M.D., Hak Y.I. (Eds.). Antimicrobial Peptides. Nova Science Publishers.
Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., Teillant A. and Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18): 5649–5654.
Vennila R., Kummar K.R., Kanchana S., Arumugam M. and Vijayalakshmi S. 2011. Preliminary investigation on antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingray. Asian Pacific Journal of Tropical Biomedicine, 1(2): 239–243.
WHO (World Health Organization). 2017. Antibacterial agents in clinical development: An analysis of the antibacterial clinical development pipeline, including tuberculosis. World Health Organization, Switzerland. 45P.
Whyte S.K. 2007. The innate immune response of finfish- Areview ofcurrent knowledge. Fish and Shellfish Immunology, 23(6): 1127–1151.
Yeaman M.R. and Yount N.Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55(1): 27–55.
Zapata A., Diez B., Cejalvo T., Gutierrez-De Frias C. and Cortes A. 2006. Ontogeny of the immune system of fish. Fish and Shellfish Immunology, 20(2): 126–136.
Zellner M., Winkler W., Hayden H., Diestinger M., Eliasen M., Gesslbauer B., Miller I., Chang M., Kungl A., Roth E. and Oehler R. 2005. Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets