مقایسه الگوی بیان ژن در بافت روپوش صدف مرواریدساز پارسی Pinctada persicaدر دو فصل گرم و سرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تکثیر و پرورش آبزیان، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 دانشیار گروه شیلات، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

3 استادیار گروه مهندسی منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

4 دانشیار گروه زیست‌شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران.

5 دانشیار پارک زیست‌فناوری خلیج فارس، جزیره قشم، ایران

10.22124/japb.2021.20297.1431

چکیده

با توجه به اثر قابل توجه دما بر فرآیند معدنی ­سازی زیستی، بررسی تاثیر تغییرات فصلی بر عملکرد و الگوی بیان ژن بافت روپوش، عضو مسئول معدنی ­سازی زیستی در صدف­ های مرواریدساز، ضروری است. در این مطالعه، الگوی بیان 9 ژن معدنی ­ساز زیستی (ASP، KRMP، SHEM5، PRISM، PEARL، CHIT، PIF، MRNP34 و NACREIN) در بافت روپوش صدف مرواریدساز Pinctada persica در دو فصل گرم و سرد مورد بررسی قرار گرفت. cDNA از بافت روپوش، با استفاده از کیت حاوی آنزیم رونویسی معکوس ساخته شد و میزان بیان ژن به روش qPCR مورد سنجش قرار گرفت. نتایج نشان­دهنده الگوی بیان ژنی متفاوت بین دو فصل گرم و سرد بود. سه ژن مربوط به لایه پریسماتیک (ASP، KRMP و SHEM5) در فصل سرد و یک ژن مربوط به لایه نقیر (PIF) در فصل گرم، بیان بیشتری را نشان دادند. به نظر می ­رسد نرخ فعالیت معدنی­ سازی زیستی در دمای بالاتر کاهش یافته و ژن­های لایه پریسماتیک نقش مهم­تری در واکنش به تغییرات فصلی داشته باشند. این مطالعه، اطلاعات ارزشمندی را برای شناخت بهتر بافت روپوش گونه P. persica و تاثیر عامل محیطی بر مکانیسم ­های مولکولی موثر در شکل­گیری پوسته و مروارید فراهم کرده است.

کلیدواژه‌ها


Addadi L., Joester D., Nudelman F. and Weiner S. 2006. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry- A European Journal, 12(4): 980–987.
Bowen R.L. 1951. The pearl fisheries of the Persian Gulf. Middle East Journal, 5(2): 161–180.
Carter J.G. 1980. Environmental and biological controls of bivalve shell mineralogy and microstructure. P: 69–113. In: Rhoads D.C. and Lutz R.A. (Eds.). Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change (Topics in Geobiology). Plenum Publishing Corp, USA.
Dix T. 1972. Histochemistry of mantle and pearl sac secretory cells in Pinctada maxima (Lamellibranchia). Australian Journal of Zoology, 20(4): 359–368.
Doney S.C., Fabry V.J., Feely R.A. and Kleypas J.A. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1: 169–192.
Feng D., Li Q., Yu H., Kong L. and Du S. 2017. Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: Characterization of genetic bases regulating shell formation. Scientific Reports, 7(1): 1–12.
Fougerouse A., Rousseau M. and Lucas J.S. 2008. Soft tissue anatomy, shell structure and biomineralization. P: 77–102. In: Southgate P.C. and Lucas J.S. (Eds.). The Pearl Oyster. Elsevier, The Netherlands.
Gardner L.D., Mills D., Wiegand A., Leavesley D. and Elizur A. 2011. Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima. BMC Genomics, 12(1): 1–16.
Gervis M.H. and Sims N.A. 1992. The biology and culture of pearl oysters (Bivalvia: Pteriidae). WorldFish, Overseas Development Administration and International Center for Living Aquatic Resources Management, England. 49P.
Goffredo S., Prada F., Caroselli E., Capaccioni B., Zaccanti F., Pasquini L., Fantazzini P., Fermani S., Reggi M. and Levy O. 2014. Biomineralization control related to population density under ocean acidification. Nature Climate Change, 4(7): 593–597.
Jabbour-Zahab R., Chagot D., Blanc F. and Grizel H. 1992. Mantle histology, histochemistry and ultrastructure of the pearl oyster Pinctada margaritifera (L.). Aquatic Living Resources, 5(4): 287–298.
Joubert C., Linard C., Le Moullac G., Soyez C., Saulnier D., Teaniniuraitemoana V., Ky C.L. and Gueguen Y. 2014. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PloS One, 9(8): 1–9 (e103944).
Kanazawa T. and Sato S.I. 2008. Environmental and physiological controls on shell microgrowth pattern of Ruditapes philippinarum (Bivalvia: Veneridae) from Japan. Journal of Molluscan Studies, 74(1): 89–95.
Kennish M.J. 1980. Shell microgrowth analysis Mercenaria mercenaria as a type example for research in population dynamics. P: 255–294. In: Rhoads D.C. and Lutz R.A. (Eds.). Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change (Topics in Geobiology). Plenum Publishing Corp, USA.
Kono M., Hayashi N. and Samata T. 2000. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochemical and Biophysical Research Communications, 269(1): 213–218.
Ky C.L., Blay C., Broustal F., Koua M.S. and Planes S. 2019. Relationship of the orange tissue morphotype with shell and pearl colouration in the mollusc Pinctada margaritifera. Scientific Reports, 9(1): 1–9.
Ky C.L., Molinari N., Moe E. and Pommier S. 2014. Impact of season and grafter skill on nucleus retention and pearl oyster mortality rate in Pinctada margaritifera aquaculture. Aquaculture International, 22(5): 1689–1701.
Li S., Liu C., Huang J., Liu Y., Zhang S., Zheng G., Xie L. and Zhang R. 2016. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Scientific Reports, 6(1): 1–10.
Liu W., Huang X., Lin J. and He M. 2012. Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata. PLoS One, 7(3): 1–7 (e33679).
Liu W., Huang X., Lin J. and He M. 2014. Effect of temperature on gene expression in the pearl oyster Pinctada fucata. Journal of Ocean University of China, 13(3): 509–515.
Livak K.J. and Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402–408.
Lowenstam H.A. 1954a. Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 40(1): 39–48.
Lowenstam H.A. 1954b. Factors affecting the aragonite: Calcite ratios in carbonate-secreting marine organisms. The Journal of Geology, 62(3): 284–322.
Lowenstam H.A. and Weiner S. 1989. On Biomineralization. Oxford University Press, UK. 334P.
Lutz R.A. and Clark G.R. 1984. Seasonal and geographic variation in the shell microstructure of a salt-marsh bivalve (Geukensia demissa (Dillwyn)). Journal of Marine Research, 42(4): 943–956.
Marie B., Joubert C., Belliard C., Tayale A., Zanella-Cleon I., Marin F., Gueguen Y. and Montagnani C. 2012a. Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters. Amino Acids, 42(5): 2009–2017.
Marie B., Joubert C., Tayale A., Zanella-Cleon I., Belliard C., Piquemal D., Cochennec Laureau N., Marin F., Gueguen Y. and Montagnani C. 2012b. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proceedings of the National Academy of Sciences, 109(51): 20986–20991.
Miyamoto H., Miyashita T., Okushima M., Nakano S., Morita T. and Matsushiro A. 1996. A carbonic anhydrase from the nacreous layer in oyster pearls. Proceedings of the National Academy of Sciences, 93(18): 9657–9660.
Montagnani C., Marie B., Marin F., Belliard C., Riquet F., Tayale A., Zanella‐Cleon I., Fleury E., Gueguen Y. and Piquemal D. 2011. Pmarg‐pearlin is a matrix protein involved in nacre framework formation in the pearl oyster Pinctada margaritifera. ChemBioChem, 12(13): 2033–2043.
Moya A., Huisman L., Ball E., Hayward D., Grasso L., Chua C., Woo H., Gattuso J.P., Foret S. and Miller D.J. 2012. Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2‐driven acidification during the initiation of calcification. Molecular Ecology, 21(10): 2440–2454.
Nishida K., Ishimura T., Suzuki A. and Sasaki T. 2012. Seasonal changes in the shell microstructure of the bloody clam, Scapharca broughtonii (Mollusca: Bivalvia: Arcidae). Palaeogeography, Palaeoclimatology, Palaeoecology, 363: 99–108.
Nishida K., Nakashima R., Majima R. and Hikida Y. 2011. Ontogenetic changes in shell microstructures in the cold seep-associated bivalve, Conchocele bisecta (Bivalvia: Thyasiridae). Paleontological Research, 15(4): 193–212.
Parvizi F., Monsefi M., Noori A. and Ranjbar M.S. 2018. Mantle histology and histochemistry of three pearl oysters: Pinctada persica, Pinctada radiata and Pteria penguin. Molluscan Research, 38(1): 11–20.
Pouvreau S. and Prasil V. 2001. Growth of the black-lip pearl oyster, Pinctada margaritifera, at nine culture sites of French Polynesia: Synthesis of several sampling designs conducted between 1994 and 1999. Aquatic Living Resources, 14(3): 155–163.
Pouvreau S., Bacher C. and Heral M. 2000. Ecophysiological model of growth and reproduction of the black pearl oyster, Pinctada margaritifera: Potential applications for pearl farming in French Polynesia. Aquaculture, 186(1-2): 117–144.
Ramakers C., Ruijter J.M. Lekanne Deprez R.H. and Moorman A.F. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339(1): 62–66.
Ranjbar M.S., Zolgharnien H., Yavari V., Archangi B., Salari M.A., Arnaud-Haond S. and Cunha R.L. 2016. Rising the Persian Gulf black-lip pearl oyster to the species level: Fragmented habitat and chaotic genetic patchiness in Pinctada persica. Evolutionary Biology, 43(1): 131–143.
Samata T., Hayashi N., Kono M., Hasegawa K., Horita C. and Akera S. 1999. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Letters, 462(1-2): 225–229.
Staib J.L., Quindry J.C., French J.P., Criswell D.S. and Powers S.K. 2007. Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1): 432–439.
Suzuki M. and Nagasawa H. 2007. The structure-function relationship analysis of Prismalin‐14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. The FEBS Journal, 274(19): 5158–5166.
Suzuki M., Murayama E., Inoue H., Ozaki N., Tohse H., Kogure T. and Nagasawa H. 2004. Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochemical Journal, 382(1): 205–213.
Suzuki M., Sakuda S. and Nagasawa H. 2007. Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Bioscience, Biotechnology, and Biochemistry, 71(7): 1735–1744.
Suzuki M., Saruwatari K., Kogure T., Yamamoto Y., Nishimura T., Kato T. and Nagasawa H. 2009. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science, 325(5946): 1388–1390.
Tsukamoto D., Sarashina I. and Endo K. 2004. Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochemical and Biophysical Research Communications, 320(4): 1175–1180.
Yano M., Nagai K., Morimoto K. and Miyamoto H. 2006. Shematrin: A family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comparative Biochemistry and Physiology (B), 144(2): 254–262.
Yao C.L. and Somero G.N. 2014. The impact of ocean warming on marine organisms. Chinese Science Bulletin, 59(5): 468–479.
Zhang C., Xie L., Huang J., Liu X. and Zhang R. 2006. A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochemical and Biophysical Research Communications, 344(3): 735–740.