ارزیابی تاثیرات آنتی‌اکسیدانی و ضدباکتریایی عصاره گیاه نیلوفر آبی ( Nelumbo nucifera )

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه زیست‌فناوری دریا، دانشکده زیست‌فناوری، دانشگاه تخصصی فناوری‌های نوین آمل، آمل، ایران

2 کارشناس زیست‌فناوری، دانشکده زیست فناوری، دانشگاه تخصصی فناوری های نوین آمل، آمل، ایران

3 فارغ التحصیل کارشناسی رشته زیست فناوری، دانشکده زیست فناوری، دانشگاه تخصصی فناوری های نوین آمل، آمل، ایران

4 استادیار گروه زیست‌فناوری میکروبی، دانشکده زیست‌فناوری، دانشگاه تخصصی فناوری‌های نوین آمل، آمل، ایران

10.22124/japb.2024.27651.1544

چکیده

با وجود پتانسیل بالایی که گیاهان آبزی می‌توانند در عرصه زیست‌فناوری داشته باشند، مطالعات اندکی بر روی آنها متمرکز شده است. این مطالعه به بررسی تاثیرات ضدباکتریایی و آنتی‌اکسیدانی عصاره اتانولی به دست آمده از دانه گیاه تالابی نیلوفر آبی (Nelumbo nucifera) پرداخته است. فعالیت آنتی‌اکسیدانی این عصاره با استفاده از آزمون‌های پتانسیل احیای آهن، محتوای فنل و فعالیت مهار رادیکال DPPH مورد ارزیابی قرار گرفت و ارزیابی‌های ضدباکتریایی با آزمون‌های کمترین غلظت مهاری (MIC) و کمترین غلظت کشندگی (MBC) بررسی شد. نتایج حاکی از اثرات آنتی‌اکسیدانی قوی عصاره بود (EC50 8/226 میکروگرم در میلی‌لیتر) و در غلظت‌های بالاتر، پتانسیل احیای آهن و محتوای فنل (93/192 میلی‌گرم گالیک اسید در هر گرم عصاره) را افزایش داد. فعالیت ضدباکتریایی علیه Escherichia coli و Staphylococcus aureus  مشاهده شد (در غلظت 50 میکروگرم در میلی‌لیتر)، به طوری که با افزایش غلظت عصاره تاثیرات ضدباکتریایی آن افزایش معنی‌داری داشت (05/0P<). هر چند، با وجود تشکیل هاله برای دیسک آنتی‌بیوتیک، هیچ گونه هاله‌ای برای دیسک حاوی غلظت‌های 200، 400 و 800 میکروگرم در میلی‌لیتر عصاره مشاهده نشد. در این مطالعه همچنین محتوای فلاونوئید عصاره مورد تجزیه و تحلیل قرار گرفت و میزان آن 3/50  میلی‌گرم کوئرستین در هر گرم عصاره به دست آمد. این یافته‌ها نشان دادند که عصاره اتانولی دانه نیلوفر آبی نه تنها خواص آنتی‌اکسیدانی دارد، بلکه استفاده از غلظت‌های مناسب آن می‌تواند باعث کاهش رشد باکتری شود و دریچه‌ای برای انجام مطالعات آینده بر روی عصاره این گیاه به منظور کاربرد در طب سنتی و صنایع دارویی باز می‌کند.

کلیدواژه‌ها

موضوعات


Adebiyi O.E., Olayemi F.O., Ning-Hua T. and Guang-Zhi Z. 2017. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia.  Beni-Suef University Journal of Basic and Applied Sciences, 6: 10–14. doi: 10.1016/j.bjbas.2016.12.003
Al-Jaber H., Abu-Rub L., Kunhipurayil H.H., Eltai N.O., Abo El Alaa R.S. and Al-Mansoori L. 2024. Medicinal properties of Qatari wetland plants: A review. 12: 24–35. doi: 10.22271/ flora.2024.v12.i2a.927
Aparadh V.T., Naik V.V. and Karadge B.A. 2012. Antioxidative properties (TPC, DPPH, FRAP, metal chelating ability, reducing power and TAC) within some Cleome species. Annali di Botanica, 2: 49–56. doi: 10.4462/ annbotrm-9958
Arumugam A. and Dhailappan A. 2012. Fatty acid composition and antidermatophytic and anti-diarrheal activity of Nelumbo nucifera seed oil. International Journal of Pharmacy and Pharmaceutical Sciences, 4: 264–270.
Asadi-Samani M., Rafieian-Kopaei M., Lorigooini Z. and Shirzad H. 2019. A screening to determine total phenol and flavonoid content of some Iran’s medicinal plants grown in Chaharmahal va Bakhtyari province. Indian Journal of Natural Products and Resources, 9: 296–302.
Baliyan S., Mukherjee R., Priyadarshini A., Vibhuti A., Gupta A., Pandey R.P. and Chang C.M. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27: 1–19 (1326). doi: 10.3390/molecules27041326
Benzie I.F. and Devaki M. 2018. The ferric reducing/antioxidant power (FRAP) assay for non‐enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications, 11: 77–106. doi: 10.1002/9781119135388.ch5
Bhat S., Joghee S. and Iyer M.S. 2023. The therapeutic potential of Nelumbo nucifera: A comprehensive review of its phytochemistry and medicinal properties. International Journal of Health and Allied Sciences, 12: 58–65. doi: 10.55691/2278-344X.10 59
Das G. and Kumar A. 2022. Wetland flora of West Bengal for phytoremediation: Physiological and biotechnological studies- A review. Biotechnological Innovations for Environmental Bioremediation, 4: 455–485. doi: 10.1007/978-981-16-9001-3_19
Ferreira I.C., Martins N. and Barros L. 2017. Phenolic compounds and its bioavailability: In vitro bioactive compounds or health promoters? Advances in Food and Nutrition Research, 82: 1–44. doi: 10.1016/bs.afnr.2016.12.0 04
Fitri K., Khairani T.N., Sianturi K.T., Leny L. and Hafiz I. 2021. Anti-inflammatory activity of ethanol extract of lotus (Nelumbo nucifera G.) seed against white male rats using paw edema method. Journal of Drug Delivery and Therapeutics, 11: 1–4. doi: 10.2227 0/jddt.v11i4.4918
Guo Z., Jia X., Lin X., Chen B., Sun S. and Zheng B. 2019. Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure. Food and Chemical Toxicology, 128: 81–88. doi: 10.1016/j.fct.2019.03.052
Hassan A., Rahman S., Deeba F. and Mahmud S. 2009. Antimicrobial activity of some plant extracts having hepatoprotective effects. Journal of Medicinal Plants Research, 3: 20–23.
Hikaambo C.N.A., Chilala P., Ndubi F., Mayoka G., Kampamba M., Kabuka R., Chabalenge B. and Mudenda S. 2023. Antimicrobial activities of Solanum aculeastrum fruit extract against Escherichia coli, Staphylococcus aureus and Candida albicans: Significance of African traditional medicine in combating infections and attaining universal health coverage. Pharmacology and Pharmacy, 14: 176–188. doi: 10.4236/pp.2023.1450 13
Jung H.A., Karki S., Kim J.H. and Choi J.S. 2015. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Archives of Pharmacal Research, 38: 1178–1187. doi: 10.1007/s122 72-014-0492-4
Kakar M.U., Karim H., Shabir G., Iqbal I., Akram M., Ahmad S., Shafi M., Gul P., Riaz S., Rehman R.U. and Salari H. 2023. A review on extraction, composi-tion, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Science and Nutrition, 11: 3655–3674. doi: 10. 1002/fsn3.3376
Kaur P., Kaur L., Kaur N., Singh A., Kaur J., Kaur H., Kaur N. and Kaur M. 2019. A brief review on pharmaceutical uses of Nelumbo nucifera. Journal of Pharmacognosy and Phytochemistry, 8: 3966–3972.
Lee D.B., Kim D.H. and Je J.Y. 2015. Antioxidant and cytoprotective effects of lotus (Nelumbo nucifera) leaves phenolic fraction. Preventive Nutrition and Food Science, 20: 22–28. doi: 10.3746/pnf.2015.20.1.22
Li Y., Kong D., Fu Y., Sussman M.R. and Wu H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148: 80–89. doi: 10. 1016/j.plaphy.2020.01.006
Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D. and Abete P. 2018. Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13: 757–772. doi: 10.2147/CIA.S158513
Lin H.Y., Kuo Y.H., Lin Y.L. and Chiang W. 2009. Antioxidative effect and active components from leaves of lotus (Nelumbo nucifera). Journal of Agricultural and Food Chemistry, 57: 6623–6629. doi: 10. 1021/jf900950z
Liu X., Song X., Lu J., Chen X., Liang E., Liu X., Zhang M., Zhang Y., Du Z. and Zhao Y. 2016. Neferine inhibits proliferation and collagen synthesis induced by high glucose in cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice. Oncotarget, 7(38): 61703–61715. doi: 10.18632/oncotarget.11225
Mohadjerani M. and Pakzad K. 2013. Evaluation of total phenolic content and antioxidant activity of Nelumbo nucifera seed from north of Iran. Applied Chemistry Today, 7: 45–49. doi: 10.22075/chem.2017. 626
Moon S.W., Ahn C.B., Oh Y. and Je J.Y. 2019. Lotus (Nelumbo nucifera) seed protein isolate exerts anti-inflammatory and antioxidant effects in LPS-stimulated RAW264. 7 macrophages via inhibiting NF-κB and MAPK pathways, and upregulating catalase activity. International Journal of Biological Macromolecules, 134: 791–797. doi: 10.1016/j.ijbiomac.2019.05.094
Mukherjee P.K., Mukherjee D., Maji A.K., Rai S. and Heinrich M. 2009. The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile. Journal of Pharmacy and Pharmacology, 61: 407–422. doi: 10.1211/jpp.61.04.00 01
Nenadis N. and Tsimidou M.Z. 2018. DPPH (2, 2‐di (4‐tert‐octyl phenyl)‐1‐picrylhydrazyl) radical scavenging mixed‐mode colori-metric assay (s). Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications, 11: 141–164. doi: 10.1002/97811191 35388.ch8
Ongsakul M., Jindarat A. and Rojanaworarit C. 2009. Antibacterial effect of crude alcoholic and aqueous extracts of six medicinal plants against Staphylococcus aureus and Escherichia coli. Journal of Health Research, 23(3): 153–156.
Pammi S.S., Suresh B. and Giri A. 2023. Antioxidant potential of medicinal plants. Journal of Crop Science and Biotechnology, 26: 13–26.
Paudel K.R. and Panth N. 2015. Phytochemical profile and biological activity of Nelumbo nucifera. Evidence-Based Complementary and Alternative Medicine, 2015: 1–16 (789124). doi: 10.1155/2015/789124
Pourmorad F., Hosseinimehr S.J. and Shahabimajd N. 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5: 1142–1145.
Rajput M.A., Zehra T., Fizzah A.L.I. and Kumar G. 2021. Evaluation of antiinflammatory activity of ethanol extract of Nelumbo nucifera fruit. Turkish Journal of Pharmaceutical Sciences, 18(1): 56–60. doi: 10.4274/tjps.galenos.2019.47108
Ruvanthika P.N. and Manikandan S. 2019. A study on antioxidant activity, phenol, and flavonoid content of seedpod of Nelumbo nucifera Gaertn. Drug Invention Today, 11(4): 835–840.
Rynkowska A., Stępniak J. and Karbownik-Lewinska M. 2020. Fenton reaction-induced oxidative damage to membrane lipids and protective effects of 17β-estradiol in porcine ovary and thyroid homogenates. International Journal of Environmental Research and Public Health, 17: 1–9 (6841). doi: 10.3390/ijerph17186841
Salazar-Aranda R., Perez-Lopez L.A., Lopez-Arroyo J., Alanis-Garza B.A. and Waksman De Torres N. 2011. Antimicrobial and antioxidant activities of plants from northeast of Mexico. Evidence‐Based Complementary and Alternative Medicine, 2011: 1–6 (536139). doi: 10.1093/ecam/nep127
Salehi B., Vlaisavljevic S., Adetunji C.O., Adetunji J.B., Kregiel D., Antolak H., Pawlikowska E., Uprety Y., Mileski K.S., Devkota H.P. and Sharifi-Rad J. 2019. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science and Technology, 91: 362–379. doi: 10.1016/j.tifs.2019.07. 042
Sanjerehei M.M. and Rundel P.W. 2017. The future of Iranian wetlands under climate change. Wetlands Ecology and Management, 25: 257–273. doi: 10. 1007/s11273-016-9514-y
Sethi S., Joshi A., Arora B., Bhowmik A., Sharma R.R. and Kumar P. 2020. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology, 246: 591–598. doi: 10.1007/s00217-020-03432-z
Sheikh S.A. 2014. Ethno-medicinal uses and pharmacological activities of lotus (Nelumbo nucifera). Journal of Medicinal Plants Studies, 2: 42–46.
Tanavar H., Barzegar H., Alizadeh Behbahani B. and Mehrnia M.A. 2020. Mentha pulegium essential oil: Chemical composition, total phenolic and its cytotoxicity on cell line HT2. Iranian Food Science and Technology Research Journal, 16: 643–653. doi: 10.22067/ifstrj.v16i5. 84722
Tang C., Xie B. and Sun Z. 2017. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli. Journal of Functional Foods, 38: 454–463. doi: 10.1016/j.jff.2017. 09.046
Tungmunnithum D., Thongboonyou A., Pholboon A. and Yangsabai A. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5: 1–16 (93). doi: 10.3390/medicines 5030093
Ulewicz-Magulska B. and Wesolowski M. 2019. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods for Human Nutrition, 74: 61–67. doi: 10.1007/s11130-018-0699-5
Vaou N., Stavropoulou E., Voidarou C., Tsigalou C. and Bezirtzoglou E. 2021. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10): 1–28 (2041). doi: 10.3390/microorganisms 9102041
Wang M., Hu W.J., Wang Q.H., Yang B.Y. and Kuang H.X. 2023. Extraction, purification, structural characteristics, biologi-cal activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. International Journal of Biological Macromolecules, 226: 562–579. doi: 10.1016/j.ijbiomac.2022.12.072
Yu Y., Wei X., Liu Y., Dong G., Hao C., Zhang J., Jiang J., Cheng J., Liu A. and Chen S. 2022. Identification and quantification of oligomeric proanthocyanidins, alkaloids, and flavonoids in lotus seeds: A potentially rich source of bioactive compounds. Food Chemistry, 379: 132124. doi: 10.10 16/j.foodchem.2022.132124
Zafar F., Asif H.M., Shaheen G., Ghauri A.O., Rajpoot S.R., Tasleem M.W., Shamim T., Hadi F., Noor R., Ali T. and Gulzar M.N. 2023. A comprehensive review on medicinal plants possessing antioxidant potential. Clinical and Experimental Pharmacology and Physiology, 50: 205–217. doi: 10.1111/1440-1681.13 743
Zhang Y., Xu Y., Wang Q., Zhang J., Dai X., Miao S. and Lu X. 2023. The antioxidant capacity and nutrient composition characteristics of lotus (Nelumbo nucifera Gaertn.) seed juice and their relationship with color at different storage temperatures. Food Chemistry, 18: 1–14 (100669). doi: 10.1016/j.fochx.2023. 100669
Zhao X., Feng X., Peng D., Liu W., Sun P., Li, G., Gu L. and Song J.L. 2016. Anticancer activities of alkaloids extracted from the Ba lotus seed in human naso-pharyngeal carcinoma CNE‑1 cells. Experimental and Therapeutic Medicine, 12: 3113–3120. doi: 10.3892/etm.2016.3727
Zhao X., Shen J., Chang K.J. and Kim S.H. 2014. Comparative analysis of antioxidant activity and functional components of the ethanol extract of lotus (Nelumbo nucifera) from various growing regions. Journal of Agricultural and Food Chemistry, 62: 6227–6235. doi: 10.1021/jf501644t